Вихревой характер магнитного поля

Вихревой характер магнитного поля

Содержание:

Вихревой характер магнитного поля заключается в непрерывности линий индукции любого магнитного поля при отсутствии начала и конца, так как они либо замкнуты, либо уходят в бесконечность. На порождение полей не влияет характер контуров с током. Векторные поля, обладающие непрерывными силовыми линиями, называются вихревыми полями. Магнитное поле также можно считать вихревым.

Электростатические поля имеют силовые линии, начинающиеся и заканчивающиеся на электрических зарядах, причем, всегда находятся в разомкнутом состоянии. Линии магнитного поля замкнуты. Это говорит об отсутствии магнитных зарядов в природе.

Электрический ток образуется благодаря движению электрических зарядов. Так как магнитных зарядов нет, это объясняет отсутствие магнитного тока. Данное утверждение можно выразить при помощи уравнения:

Определение вихревого поля также выполнимо другим способом.

Вихревое магнитное поле

Векторные поля, вектор которых не равен нулю – это вихревые магнитные поля.

Следуя из теоремы о циркуляции локального вида, которая влияет на вихревой характер магнитного поля:

r o t B → = μ 0 j → ( 2 ) , где j → считается объемной плотностью тока, и второй формы определения вихревого поля можно заключить, что магнитное поле будет вихревым там, где проходят токи, а безвихревым там, где их нет.

При отсутствии токов вектор магнитной индукции B → представляется в виде градиента скалярного магнитного потенциала φ m :

B → = — g r a d φ m ( 3 ) .

Если имеются токи, то данное представление невозможно.

Различие между потенциальными и вихревыми полями

Основными уравнениями магнитного поля постоянных токов считаются выражения вида:

r o t B → = μ 0 j → d i v B → = 0 ( 4 ) .

Произведем сравнение с основными уравнениями электростатики:

r o t E → = 0 d i v E → = 1 ε 0 ρ ( 5 ) .

Рассматривая систему ( 5 ) , видно, что электрическое поле всегда потенциально, а его источниками являются электростатические (неподвижные) заряды.

Магнитное поле считается вихревым при наличии токов. Оно зависит от формы контура и не определяется только положением начала и конца этого контура. Существование однозначной разности потенциалов в магнитном поле исключено. Значение магнитного напряжения по замкнутому контуру не равняется нулю.

Электрические токи являются источниками поля. Магнитное поле считается вихревым, так как его дивергенция везде равна нулю. Его также называют соленоидальным. Определение потенциального электростатического поля возможно при заданной дивергенции напряженности d i v E → ( x , y , z ) в качестве функции координат. Полное определение вихревого магнитного поля реально, когда имеется мощность его вихрей, то есть r o t B → ( x , y , z ) как функция координат.

Показать, почему для вихревого магнитного поля нельзя представить вектор индукции B → в виде градиента магнитного потенциала φ m .

B → = — g r a d φ m ( 1 . 1 ) .

Для выражения ( 1 . 1 ) можно применить операцию r o t :

r o t B → = — r o t g r a d φ m ( 1 . 2 ) .

Известно значение r o t :

r o t ( g r a d φ m ) = 0 ( 1 . 3 ) .

При подстановке ( 1 . 3 ) в ( 1 . 2 ) имеем:

Ответ: Вспомнив теорему о циркуляции, получаем отсутствие токов. В данном случае, представление вектора индукции магнитного поля невозможно в виде магнитного потенциала в области, где проходят токи.

Применение понятия скалярного магнитного потенциала φ m возможно только в области пространства, где j → = 0 . Данная часть пространства φ m характеризуется неоднозначностью функции. Показать это.

Необходимо рассмотреть магнитное поле возле контура с током, как изображено на рисунке 1 . По теореме о циркуляции для любого контура выполнимо равенство:

Если токов нет, магнитное поле становится потенциальным, интеграл, который необходимо взять между A и B , не зависит от пути интегрирования, то запись примет вид:

∫ A a B B → d l → = ∫ A b B B → d l → ( 2 . 2 ) .

∫ A b B B → d l → = ∫ A B B → d l → = φ m A — φ m B ( 2 . 3 ) .

Выражение ( 2 . 3 ) может быть рассмотрено в качестве разности скалярных магнитных потенциалов в точках A и B . Можно пойти иным путем и принять значение потенциала равным нулю в точке В , как выполнялось для нахождения потенциала в электростатике:

∫ A B B → d l → = φ m A ( 2 . 4 ) .

При выборе контура, охватывающего какой-либо ток (контур A c b B ), как показано на рисунке 1 , линейный интеграл по замкнутому контуру от циркуляции вектора индукции по нему будет не равен нулю:

∮ A c b B B → d l → ≠ 0 ( 2 . 5 ) .

∮ A c b B B → d l → ≠ ∫ A c B B → d l → — ∫ A b B B → d l → = I ≠ 0 ( 2 . 6 )

∫ A c B B → d l → = ∫ A b B B → d l → + I = φ m A — φ m B + I ( 2 . 7 ) .

При выборе какого-либо пути A n B , охватывающего ток в количестве n раз, имеем:

∫ A n B B → d l → = φ m A — φ m B + n I ( 2 . 8 ) .

Следует задать нулевой потенциал в точке В :

∫ A n B B → d l → = φ m A + n I ( 2 . 9 ) .

Ответ: Получив уравнение ( 2 . 9 ) , очевидно, что скалярный магнитный потенциал является неоднозначной величиной.

Источник:
http://zaochnik.com/spravochnik/fizika/magnitnoe-pole/vihrevoj-harakter-magnitnogo-polja/

Каковы различия потенциального и вихревого силовых полей

Вихревой характер магнитного поля заключается в непрерывности линий индукции любого магнитного поля при отсутствии начала и конца, так как они либо замкнуты, либо уходят в бесконечность. На порождение полей не влияет характер контуров с током. Векторные поля, обладающие непрерывными силовыми линиями, называются вихревыми полями. Магнитное поле также можно считать вихревым.

Электростатические поля имеют силовые линии, начинающиеся и заканчивающиеся на электрических зарядах, причем, всегда находятся в разомкнутом состоянии. Линии магнитного поля замкнуты. Это говорит об отсутствии магнитных зарядов в природе.

Электрический ток образуется благодаря движению электрических зарядов. Так как магнитных зарядов нет, это объясняет отсутствие магнитного тока. Данное утверждение можно выразить при помощи уравнения:

Определение вихревого поля также выполнимо другим способом.

Вихревое магнитное поле

Векторные поля, вектор которых не равен нулю – это вихревые магнитные поля.

Следуя из теоремы о циркуляции локального вида, которая влияет на вихревой характер магнитного поля:

r o t B → = μ 0 j → ( 2 ) , где j → считается объемной плотностью тока, и второй формы определения вихревого поля можно заключить, что магнитное поле будет вихревым там, где проходят токи, а безвихревым там, где их нет.

При отсутствии токов вектор магнитной индукции B → представляется в виде градиента скалярного магнитного потенциала φ m :

B → = – g r a d φ m ( 3 ) .

Если имеются токи, то данное представление невозможно.

Различие между потенциальными и вихревыми полями

Основными уравнениями магнитного поля постоянных токов считаются выражения вида:

r o t B → = μ 0 j → d i v B → = 0 ( 4 ) .

Произведем сравнение с основными уравнениями электростатики:

r o t E → = 0 d i v E → = 1 ε 0 ρ ( 5 ) .

Рассматривая систему ( 5 ) , видно, что электрическое поле всегда потенциально, а его источниками являются электростатические (неподвижные) заряды.

Магнитное поле считается вихревым при наличии токов. Оно зависит от формы контура и не определяется только положением начала и конца этого контура. Существование однозначной разности потенциалов в магнитном поле исключено. Значение магнитного напряжения по замкнутому контуру не равняется нулю.

Электрические токи являются источниками поля. Магнитное поле считается вихревым, так как его дивергенция везде равна нулю. Его также называют соленоидальным. Определение потенциального электростатического поля возможно при заданной дивергенции напряженности d i v E → ( x , y , z ) в качестве функции координат. Полное определение вихревого магнитного поля реально, когда имеется мощность его вихрей, то есть r o t B → ( x , y , z ) как функция координат.

Показать, почему для вихревого магнитного поля нельзя представить вектор индукции B → в виде градиента магнитного потенциала φ m .

B → = – g r a d φ m ( 1 . 1 ) .

Для выражения ( 1 . 1 ) можно применить операцию r o t :

r o t B → = – r o t g r a d φ m ( 1 . 2 ) .

Известно значение r o t :

r o t ( g r a d φ m ) = 0 ( 1 . 3 ) .

При подстановке ( 1 . 3 ) в ( 1 . 2 ) имеем:

Ответ: Вспомнив теорему о циркуляции, получаем отсутствие токов. В данном случае, представление вектора индукции магнитного поля невозможно в виде магнитного потенциала в области, где проходят токи.

Применение понятия скалярного магнитного потенциала φ m возможно только в области пространства, где j → = 0 . Данная часть пространства φ m характеризуется неоднозначностью функции. Показать это.

Необходимо рассмотреть магнитное поле возле контура с током, как изображено на рисунке 1 . По теореме о циркуляции для любого контура выполнимо равенство:

Если токов нет, магнитное поле становится потенциальным, интеграл, который необходимо взять между A и B , не зависит от пути интегрирования, то запись примет вид:

∫ A a B B → d l → = ∫ A b B B → d l → ( 2 . 2 ) .

∫ A b B B → d l → = ∫ A B B → d l → = φ m A – φ m B ( 2 . 3 ) .

Выражение ( 2 . 3 ) может быть рассмотрено в качестве разности скалярных магнитных потенциалов в точках A и B . Можно пойти иным путем и принять значение потенциала равным нулю в точке В , как выполнялось для нахождения потенциала в электростатике:

∫ A B B → d l → = φ m A ( 2 . 4 ) .

При выборе контура, охватывающего какой-либо ток (контур A c b B ), как показано на рисунке 1 , линейный интеграл по замкнутому контуру от циркуляции вектора индукции по нему будет не равен нулю:

∮ A c b B B → d l → ≠ 0 ( 2 . 5 ) .

∮ A c b B B → d l → ≠ ∫ A c B B → d l → – ∫ A b B B → d l → = I ≠ 0 ( 2 . 6 )

∫ A c B B → d l → = ∫ A b B B → d l → + I = φ m A – φ m B + I ( 2 . 7 ) .

При выборе какого-либо пути A n B , охватывающего ток в количестве n раз, имеем:

∫ A n B B → d l → = φ m A – φ m B + n I ( 2 . 8 ) .

Следует задать нулевой потенциал в точке В :

∫ A n B B → d l → = φ m A + n I ( 2 . 9 ) .

Ответ: Получив уравнение ( 2 . 9 ) , очевидно, что скалярный магнитный потенциал является неоднозначной величиной.

Вихревой характер магнитного поля заключается в непрерывности линий индукции любого магнитного поля при отсутствии начала и конца, так как они либо замкнуты, либо уходят в бесконечность. На порождение полей не влияет характер контуров с током. Векторные поля, обладающие непрерывными силовыми линиями, называются вихревыми полями. Магнитное поле также можно считать вихревым.

Электростатические поля имеют силовые линии, начинающиеся и заканчивающиеся на электрических зарядах, причем, всегда находятся в разомкнутом состоянии. Линии магнитного поля замкнуты. Это говорит об отсутствии магнитных зарядов в природе.

Электрический ток образуется благодаря движению электрических зарядов. Так как магнитных зарядов нет, это объясняет отсутствие магнитного тока. Данное утверждение можно выразить при помощи уравнения:

Определение вихревого поля также выполнимо другим способом.

Вихревое магнитное поле

Векторные поля, вектор которых не равен нулю – это вихревые магнитные поля.

Следуя из теоремы о циркуляции локального вида, которая влияет на вихревой характер магнитного поля:

r o t B → = μ 0 j → ( 2 ) , где j → считается объемной плотностью тока, и второй формы определения вихревого поля можно заключить, что магнитное поле будет вихревым там, где проходят токи, а безвихревым там, где их нет.

При отсутствии токов вектор магнитной индукции B → представляется в виде градиента скалярного магнитного потенциала φ m :

Читайте также  Какая лампа лучше для гель-лака: 7 критериев выбора

B → = – g r a d φ m ( 3 ) .

Если имеются токи, то данное представление невозможно.

Различие между потенциальными и вихревыми полями

Основными уравнениями магнитного поля постоянных токов считаются выражения вида:

r o t B → = μ 0 j → d i v B → = 0 ( 4 ) .

Произведем сравнение с основными уравнениями электростатики:

r o t E → = 0 d i v E → = 1 ε 0 ρ ( 5 ) .

Рассматривая систему ( 5 ) , видно, что электрическое поле всегда потенциально, а его источниками являются электростатические (неподвижные) заряды.

Магнитное поле считается вихревым при наличии токов. Оно зависит от формы контура и не определяется только положением начала и конца этого контура. Существование однозначной разности потенциалов в магнитном поле исключено. Значение магнитного напряжения по замкнутому контуру не равняется нулю.

Электрические токи являются источниками поля. Магнитное поле считается вихревым, так как его дивергенция везде равна нулю. Его также называют соленоидальным. Определение потенциального электростатического поля возможно при заданной дивергенции напряженности d i v E → ( x , y , z ) в качестве функции координат. Полное определение вихревого магнитного поля реально, когда имеется мощность его вихрей, то есть r o t B → ( x , y , z ) как функция координат.

Показать, почему для вихревого магнитного поля нельзя представить вектор индукции B → в виде градиента магнитного потенциала φ m .

B → = – g r a d φ m ( 1 . 1 ) .

Для выражения ( 1 . 1 ) можно применить операцию r o t :

r o t B → = – r o t g r a d φ m ( 1 . 2 ) .

Известно значение r o t :

r o t ( g r a d φ m ) = 0 ( 1 . 3 ) .

При подстановке ( 1 . 3 ) в ( 1 . 2 ) имеем:

Ответ: Вспомнив теорему о циркуляции, получаем отсутствие токов. В данном случае, представление вектора индукции магнитного поля невозможно в виде магнитного потенциала в области, где проходят токи.

Применение понятия скалярного магнитного потенциала φ m возможно только в области пространства, где j → = 0 . Данная часть пространства φ m характеризуется неоднозначностью функции. Показать это.

Необходимо рассмотреть магнитное поле возле контура с током, как изображено на рисунке 1 . По теореме о циркуляции для любого контура выполнимо равенство:

Если токов нет, магнитное поле становится потенциальным, интеграл, который необходимо взять между A и B , не зависит от пути интегрирования, то запись примет вид:

∫ A a B B → d l → = ∫ A b B B → d l → ( 2 . 2 ) .

∫ A b B B → d l → = ∫ A B B → d l → = φ m A – φ m B ( 2 . 3 ) .

Выражение ( 2 . 3 ) может быть рассмотрено в качестве разности скалярных магнитных потенциалов в точках A и B . Можно пойти иным путем и принять значение потенциала равным нулю в точке В , как выполнялось для нахождения потенциала в электростатике:

∫ A B B → d l → = φ m A ( 2 . 4 ) .

При выборе контура, охватывающего какой-либо ток (контур A c b B ), как показано на рисунке 1 , линейный интеграл по замкнутому контуру от циркуляции вектора индукции по нему будет не равен нулю:

∮ A c b B B → d l → ≠ 0 ( 2 . 5 ) .

∮ A c b B B → d l → ≠ ∫ A c B B → d l → – ∫ A b B B → d l → = I ≠ 0 ( 2 . 6 )

∫ A c B B → d l → = ∫ A b B B → d l → + I = φ m A – φ m B + I ( 2 . 7 ) .

При выборе какого-либо пути A n B , охватывающего ток в количестве n раз, имеем:

∫ A n B B → d l → = φ m A – φ m B + n I ( 2 . 8 ) .

Следует задать нулевой потенциал в точке В :

∫ A n B B → d l → = φ m A + n I ( 2 . 9 ) .

Ответ: Получив уравнение ( 2 . 9 ) , очевидно, что скалярный магнитный потенциал является неоднозначной величиной.

Различают два основных типа векторных полей: потенциальные (безвихревые) и вихревые (соленоидальные) поля. Физические свойства их различны.

Потенциальное поле тесно связано со своим источником, линии поля имеют начало (исток) и конец (сток). Линии вихревого поля всегда непрерывны и не имеют источников (рисунок 12).

Рисунок 12 − Потенциальное и вихревое поля

Для потенциального поля имеем

,

то есть циркуляция вектора по любому замкнутому контуру равна нулю.

Если поле является вихревым, то поток вектора через любую замкнутую поверхность равен нулю:

.

В дальнейшем будет показано, что электростатическое поле является только потенциальным, магнитное – вихревым.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10458 – | 7917 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник:
http://topsamoe.ru/kakovy-razlichija-potencialnogo-i-vihrevogo/

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

В мире нет ничего особенного. Никакого волшебства. Только физика.

Чак Паланик

Тестирование

Вихревое электрическое поле

Вихревое электрическое поле — это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

Источник:
http://infofiz.ru/index.php/mirfiziki/formuly/319-velp

Потенциальное и вихревое движение;

Вихревое движение — движение жидкости или газа, при котором мгновенная скорость вращения элементарных объемов среды не равна нулю и всюду тождественна. Количественной мерой завихренности служит вектор ω = rot v, где v — скорость жидкости; ω называют вектором вихря или просто завихренностью. Эквивалентной мерой завихренности, более удобной в теоретических построениях, является антисимметричная часть тензора градиента скорости Ω = ½(Δv-ΔvT). В декартовых координатах x1,x2,x3 связь компонент вектора ω и тензора Ω дается выражениями

ω1 = 2Ω23
ω2 = 2Ω31
ω3 = 2Ω12
Ωij = ½(dvi/dxj — dvj/dxi)

Движение называется безвихревым или потенциальным, если ω = 0, в противном случае имеет место вихревое движение.

Векторное поле вихря удобно характеризовать некоторыми геометрическими образами. Вихревой линией называется линия, касательная к которой в каждой точке направлена по вектору вихря; совокупность вихревых линий, проходящих через замкнутую кривую, образует вихревую трубку. Поток вектора вихря через любое сечение вихревой трубки одинаков. Он называется интенсивностью вихревой трубки и равен циркуляции скорости Г по произвольному контуру C, однократно охватывающему вихревую трубку Г=∫cvds.

За редким исключением, движение жидкости или газа почти всегда бывает вихревым. Так, вихревым является ламинарное течение в круглой трубе, когда скорость распределяется по параболическому закону, течение в пограничном слое при плавном обтекании тела и в следе за плохо обтекаемым телом. Вихревой характер носит любое турбулентное течение. В этих условиях выделение класса «вихревое движение» оказывается осмысленным, благодяря тому, что при преобладании инерционных сил над вязкими (при очень больших числах Рейнольдса) типична локализация завихрености в обособленнх массах жидкости — вихрях или вихревых зонах.

Согласно классическим теоремам Гельмгольца, в предельном случае движения невязкой жидкости, плотность которой постоянна или зависит только от давления, в потенциальном силовом поле вихревые линии вморожены в среду, то есть в процессе движения они состоят из одних и тех же частиц жидкости — являются материальными линиями. Вихревые трубки при этом оказываются вмороженными в среду, а их интенсивность сохраняется в процессе движения. Сохраняется также циркуляция скорости по любому контуру, состоящему из одних и тех же частиц жидкости (теорема Кельвина). В частности, если при движении область, охватываемая данным контуром, сужается, то интенсивность вращательного движения внутри него возрастает. Это важный механизм концентрации завихренности, реализующийся при вытекании жидкости из отверстия в дне сосуда (ванны), при образовании водоворотов вблизи нисходящих потоков в реках и определяющий образование циклонов и тайфунов в зонах пониженного атмосферного давления в которые происходит подтекание (конвергенция) воздушных масс.

В жидкости, находящейся в состоянии покоя или потенциального движения, вихри возникают либо из-за нарушения баротонии, например образование кольцевых вихрей при подъеме нагретых масс воздуха — термиков, либо из-за взаимодействия с твердыми телами.

Если обтекание тела происходит при больших числах Re, завихренность порождается в узких зонах — в пограничном слое — проявлением вязких эффектов, а затем сносится в основной поток, где формируются отчетливо видимые вихри, некоторое время эволюционирующие и сохраняющие свою индивидуальность. Ососбенно эффектно это проявляется в образовании за плохообтекаемым телом регулярной вихревой дорожки Кармана. Вихреобразование в следе за плохообтекаемым телом определяет основная часть лобового сопротивления тела, а образование вихрей у концов крыльев летательных аппаратов вызывает дополнительное индуктивное сопротивление.

Читайте также  Основные параметры синусоидального тока

При анализе динамических вихрей и их взаимодействия с внешним безвихревым потоком часто используется модель сосредоточенных вихрей — вихревых нитей, представляющих собой вихревые трубки крошечной интенсивности, но бесконечно малого диаметра. Вблизи вихревой нити жидкость движется относительно нее по окружностям, причем скорость обратно пропорциональна расстоянию от нити, v = Г/2πr. Если ось нити прямолинейна, это выражение верно для любых расстояний от нити (потенциальный вихрь). В сечении нормальной плоскости это течение соответствует точечному вихрю. Система точечных вихрей представляет собой консервативную динамическую систему с конечным числом степеней свободы, во многом аналогичную системе взаимодействующих частиц. Сколь угодно малое возмущение первоначально прямолинейных вихревых нитей приводит к их искривлению с бесконечными скоростями. Поэтому в расчетах их заменяют вихревыми трубками конечной завихренности. Узкая область завихренности, разделяющая две протяженные области безвихревого движения, моделируется пеленой — поверхностью, выстланной вихревыми нитями бесконечно малой интенсивности, так, что суммарная их интенсивность на единицу длины по нормали к ним вдоль поверхности постоянна. Вихревая поверхность представляет собой поверхность разрыва касательных компонент скорости. Она неустойчива к малым возмущениям.

В вязкой жидкости происходит выравнивание — диффузия локализированных завихренностей, причем роль коэффициента диффузии играет кинематическая вязкость жидкости ν. При этом эволюция завихренности определяется уравнением

При больших числах Re движение турбулизируется, и диффузия завихренности определяется много большим коэффициентом эффективной турбулентной вязкости, не являющимся константой для жидкости и сложным образом зависящим от характера движения.

Потенциальное движение (или безвихревое) – Движение жидкости происходит без вращения жидких частиц.

Движение жидкости (воздуха), при котором вихрь скорости в каждой точке поля равен нулю. При горизонтальном Б. Д.

Потенциа́льное тече́ние —- безвихревое движение жидкости или газа, при котором деформация и перемещение малого объема жидкости происходит без вращения (вихря). При потенциальном течении скорость жидкости может быть представлена следующим образом:

где φ(x,y,z) —- некоторая скалярная функция, называемая потенциалом скорости течения. Движение реальных жидкостей будет потенциальным в тех областях, где действие сил вязкости ничтожно мало по сравнению с действием сил давления и в которых нет завихрений, образовавшихся за счет срыва со стенок пограничного слоя или за счет неравномерного нагревания. Необходимым и достаточным условием потенциальности течения являются равенства:

Источник:
http://studopedia.su/16_164671_potentsialnoe-i-vihrevoe-dvizhenie.html

Электрические вихревые несоленоидальные поля

Вихревые и соленоидальные поля — это разные понятия

В результате анализа свойств электрических и магнитных потоков в электродинамике найдена ошибка. Обнаружено, что не все постулаты в электродинамике соответствуют экспериментальным фактам, а вихревые электрические поля могут иметь незамкнутые индукционные линии. Т.е. в вихревых электрических полях всегда замкнуты только линии тока электрического смещения, а линии потока электрического смещения могут быть не замкнутыми (ток электрического смещения измеряется в амперах, а поток электрического смещения в кулонах).

При движении магнита вместе с ним перемещается поток магнитной индукции. Зная скорость движения v и величину магнитной индукции B, можно, согласно электродинамической формуле преобразования полей E = [vB], вычислить напряженность E возникающего вихревого электрического поля.

Если в формуле преобразования полей E = [vB] заменить напряженность на индукцию (в вакууме D = eE), то получим D = e[vB], где D — электрическая индукция, B — магнитная индукция, v — скорость движения, e — электрическая постоянная. При этом возникающая электрическая индукция всегда поперечна движению. Можно сформулировать правило возникновения электрической индукции для прямолинейного движения: если ладонь правой руки расположить так, чтобы четыре пальца указывали направление движения магнитного потока (поля), связанного с движущимся магнитом, а вектор B входил в ладонь, тогда отставленный большой палец укажет направление вектора D. Данное правило — это как бы правило для силы Лоренца, только, наоборот (отличие в системе отсчета), там движется заряд, а магнит покоится, здесь же магнит движется, а пробный заряд, указывающий направление силовых линий электрической индукции, — покоится. Поэтому там — правило для левой руки, а здесь, наоборот, — для правой. Таким образом, если движется заряд, а магнит покоится, то для определения силы действует правило левой руки. Если же движется магнит, а заряд покоится, то для определения силы действует правило правой руки. При этом возникновение электрической силы связано с тем, что вокруг движущегося магнита возникает вихревое электрическое поле D = e[vB] (на покоящиеся заряды магнитное поле не действует).

В литературе по электродинамике не делают различия между электрическими вихревыми и соленоидальными полями, хотя это разные понятия. Признаком соленоидального поля является замкнутость линий электрической индукции (поток вектора D через замкнутую поверхность равен нулю), а для вихревого — работа сил при движении по замкнутой линии может быть отлична от нуля. Т.е. вихревые поля, например, могут возбуждать вихревые электрические токи.

«Работа сил вихревого электрического поля при движении электрического заряда по замкнутой линии может быть отлична от нуля.»

Физика. О.Ф.Кабардин. 1991. С.189.

В отличие от вихревого электрического поля работа сил потенциального поля при движении электрического заряда по замкнутой линии всегда равна нулю. Надо заметить, что, когда говорится о движении по замкнутой линии, то это не обязательно движение по индукционным или силовым линиям поля.

Потенциальные поля — это постоянные поля, вихревые поля — это переменные поля. Например, при движении потенциального поля возникает переменная составляющая в виде вихревого поля. Хотя работа сил вихревых полей при движении по замкнутой линии может быть отлична от нуля, линии напряженности поля могут быть как замкнутыми, так и незамкнутыми. Например, при движении магнита возникает вихревое электрическое поле, но в зависимости от ориентации магнита поле может быть как соленоидальным, так и нет.

Рассмотрим такой пример: магнит движется равномерно, прямолинейно, а его полюса ориентированы поперечно движению. Согласно правилу возникновения электрической индукции (D = e [vB] — правило правой руки), возникающий вихревой электрический поток не является соленоидальным, так как линии электрической индукции не замкнуты. Они начинаются в одной условной области возмущения (+) , которая сопровождает движущийся магнит, и заканчиваются в другой (-) . Для представления достаточно рассмотреть только две области (+) и (-) , изображенные на рисунке. Эти разноименные области возмущения возникают потому, что поток магнитной индукции внутри магнита имеет одно направление, а за его пределами — обратное. Такое движущееся возмущение электрического и магнитного полей представляет поперечное электромагнитное возмущение. Также надо заметить, что, хотя при таком движении магнита возникающее вихревое электрическое поле не является замкнутым, но связанный с ним ток электрического смещения замкнут (токи всегда замкнуты). В данном примере для наглядности напряженность электрического поля можно представить через силу Лоренца, если перейти в систему отсчета, где магнит покоится, а пробный заряд движется.

«Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии.»

Физика. О.Ф.Кабардин. 1991. С.189.

Как из теории, так и из эксперимента следует, что при поперечном движении магнита линии напряженности вихревого электрического поля могут быть не замкнутыми и, соответственно, поток индукции сквозь замкнутую поверхность не равен нулю. Т.е. в современной электродинамике имеется прямое несоответствие фактам. Удивительно, но за всю историю изучения магнетизма не было рассмотрено поперечное движение магнита, приводящее к пересмотру основ электродинамики, т.е. к пересмотру постулатов, которые в электродинамике играют такую же роль, как законы Ньютона в классической механике. Постулаты, дающие неверное представление о полевых процессах, соответственно, не всегда позволяют делать и правильные расчеты. Ошибочность этих постулатов была одной из причин, по которым электродинамика не могла рассматривать и рассчитывать дискретные электромагнитные волны - фотоны, где магнитное поле также поперечно. Т.е. не только частицы могут иметь заряды, но и просто области возмущения поля (без частиц) также представляют заряды, где поток электрической индукции через замкнутую поверхность не равен нулю. Таким образом, вихревые электрические поля могут быть не только в виде замкнутых потоков индукции, но также и в виде индуцированных электрических зарядов, для которых, соответственно, действуют и законы, присущие электрическим зарядам. Например, закон сохранения заряда, т.е., если где-то возникает область возмущения с положительным знаком, то обязательно возникает и отрицательная область.

«Вихревое электрическое поле порождается переменным магнитным. Его силовые линии всегда замкнуты, подобно силовым линиям магнитного поля.»

Физика. В.Ф.Дмитриева. 2001. С.225.

Прежде чем вводить фундаментальный постулат, утверждающий, что силовые линии вихревого электрического поля всегда замкнуты, необходимо было рассмотреть все варианты изменения магнитного поля, в том числе такие, где движение магнита является поперечным. Т.е. рассмотрение физических процессов не должно быть односторонним. Фарадей рассмотрел продольное движение магнита, открыв электромагнитную индукцию, а поперечное движение магнита, имеющее принципиальное значение для понимания электродинамики полевых процессов, так и осталось нерассмотренным. Таким образом, продольное движение магнита приводит к возникновению вихревого электрического поля с замкнутыми силовыми линиями, а поперечное движение - к возникновению вихревого электрического поля, где силовые линии не являются замкнутыми, т.е. к возникновению индуцированных электрических зарядов.

«. теорема Гаусса верна не только в электростатике, но и в электродинамике, имеющей дело с переменными во времени электромагнитными полями. Верна эта гипотеза или нет - на этот вопрос может дать ответ только опыт. Вся совокупность опытных фактов говорит в пользу этой гипотезы.»

Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.1. С.37.

Точнее, почти вся совокупность опытных фактов говорит в пользу этой гипотезы, но, к сожалению, такой опытный факт как поперечное движение магнита остался нерассмотренным. Надо заметить, что это первая ошибка, обнаруженная в электродинамических постулатах за все время существования электродинамики.

Источник:
http://www.km.ru/referats/EB11D9C2C4574616B9832DC9D59777BF

§ 12. Вихревое электрическое поле

Магнитный поток Ф = BS cos α. Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поле, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом (2.4), но происхождение этой ЭДС различно.

Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8). Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.

Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатическое или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле. К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем — это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле. Поле приводит в движение электроны в проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.

Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).

Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .

Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.

Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление электромагнитной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.

Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла — минимальным.

Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каждой пластине.

В § 7 отмечалось, что существуют магнитные изоляторы — ферриты. При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.

При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.

Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.

Вопросы к параграфу

1. Какова природа сторонних сил, вызывающих появление индукционного тока в неподвижном проводнике?

2. В чем отличие вихревого электрического поля от электростатического или стационарного?

3. Что такое токи Фуко?

4. В чем преимущества ферритов по сравнению с обычными ферромагнетиками?

Источник:
http://xn--24-6kct3an.xn--p1ai/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_11_%D0%BA%D0%BB_%D0%9C%D1%8F%D0%BA%D0%B8%D1%88%D0%B5%D0%B2/13.html