Какими законами необходимо руководствоваться при составлении уравнений

Какими законами необходимо руководствоваться при составлении уравнений

Владельцы сайта

  • Галина Пчёлкина

Урок №17-18. Закон сохранения массы веществ. Химические уравнения

Закон сохранения массы веществ

Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции?

Чтобы ответить на данный вопрос наблюдайте за следующими видео-экспериментами:

Вывод: Масса веществ до и после реакции не изменилась.

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.

С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.

Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Закон сохранения массы веществ применяется при составлении уравнений химических реакций.

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

В результате химического взаимодействия серы и железа получено вещество – сульфид железа ( II ) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами.

Новые вещества, образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде уравнения химической реакции:

Алгоритм составления уравнения химической реакции

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H 2 ; N 2 ; O 2 ; F 2 ; Cl 2 ; Br 2 ; I 2. Между реагентами ставим знак «+», а затем стрелку:

2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

  • Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
  • В данном случае это атомы кислорода.
  • Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

Источник:
http://www.sites.google.com/site/himulacom/zvonok-na-urok/8-klass/urok-no14-zakon-sohranenia-massy-vesestva-himiceskie-uravnenia

Химические уравнения. Составление уравнений химической реакции. 8-й класс

Класс: 8

Презентация к уроку

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: помочь обучающимся сформировать знания о химическом уравнении как об условной записи химической реакции с помощью химических формул.

образовательные:

  • систематизировать ранее изученный материал;
  • обучать умению составлять уравнения химических реакций;

воспитательные:

  • воспитывать коммуникативные навыки (работа в паре, умение слушать и слышать);

развивающие:

  • развивать учебно-организационные умения, направленные на выполнение поставленной задачи;
  • развивать аналитические навыки мышления.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, оценочные листы, карта рефлексии, “набор химических знаков”, тетрадь с печатной основой, реактивы: гидроксид натрия, хлорид железа(III), спиртовка,держатель,спички, лист ватмана, разноцветные химические знаки.

І. Организационный момент.

ІІ. Актуализация знаний и умений.

ІІІ. Мотивация и целеполагание.

ІV. Изучение нового материала:

4.1 реакция горения алюминия в кислороде;

4.2 реакция разложения гидроксида железа (III);

4.3 алгоритм расстановки коэффициентов;

4.4 минута релаксации;

4.5 расставь коэффициенты;

V. Закрепление полученных знаний.

VІ. Подведение итогов урока и выставление оценок.

VІІ. Домашнее задание.

VІІІ. Заключительное слово учителя.

Химическая натура сложной частицы
определяется натурой элементарных
составных частей,
количеством их и
химическим строением.
Д.И.Менделеев

Учитель. Здравствуйте ,ребята. Садитесь.

Обратите внимание: у вас на столе лежит тетрадь с печатной основой (приложение 1), в которой вы сегодня будете работать, и оценочный лист, в нем вы будете фиксировать свои достижения, подпишите его.

Актуализация знаний и умений.

Учитель. Мы с вами познакомились с физическими и химическими явлениями, химическими реакциями и признаками их протекания. Изучили закон сохранения массы веществ.

Давайте проверим ваши знания. Я предлагаю вам открыть тетради с печатной основой и выполнить задание 1. На выполнение задания вам дается 5 минут.

Тест по теме “Физические и химические явления. Закон сохранения массы веществ”

1. Чем химические реакции отличаются от физических явлений?

  1. Изменение формы, агрегатного состояния вещества
  2. Образование новых веществ
  3. Изменение местоположения

2. Каковы признаки химической реакции?

  1. Образование осадка, изменение цвета, выделение газа Намагничивание, испарение, колебание
  2. Рост и развитие, движение, размножение

3. В соответствии с каким законом составляются уравнения химических реакций?

  1. Закон постоянства состава вещества
  2. Закон сохранения массы вещества
  3. Периодический закон
  4. Закон динамики
  5. Закон всемирного тяготения

4. Закон сохранения массы вещества открыл

  1. Д.И. Менделеев
  2. Ч. Дарвин
  3. М.В. Ломоносов
  4. И. Ньютон
  5. А.И. Бутлеров

5. Химическим уравнением называют

  1. Условную запись химической реакции Условную запись состава вещества
  2. Запись условия химической задачи

Учитель. Вы выполнили работу. Я предлагаю вам осуществить ее проверку. Поменяйтесь тетрадями и осуществите взаимопроверку. Внимание на экран. За каждый правильный ответ – 1 балл. Общее количество баллов занесите в оценочные листы.

Мотивация и целеполагание.

Учитель. Используя эти знания, мы сегодня будем составлять уравнения химических реакций, раскрывая проблему “Является ли закон сохранения массы веществ основой для составления уравнений химических реакций”

Изучение нового материала.

Учитель. Мы привыкли считать, что уравнение-это математический пример, где есть неизвестное, и это неизвестное нужно вычислить. А вот в химических уравнениях обычно ничего неизвестного не бывает: в них просто записывается все формулами: какие вещества вступают в реакцию и какие получаются в ходе этой реакции. Посмотрим опыт.

(реакция соединения серы и железа)

Учитель. С точки зрения массы веществ, уравнение реакции соединения железа и серы понимается следующим образом

Железо + сера —> сульфид железа (II ) (задание 2 тпо)

Но в химии слова отражаются химическими знаками. Запишите это уравнение химическими символами.

(один ученик пишет на доске, остальные в ТПО)

Учитель. Теперь прочитайте.

Обучающиеся. Молекула железа взаимодействует с молекулой серы, получается одна молекула сульфида железа (II).

Учитель. В данной реакции мы видим, что количество исходных веществ равно количеству веществ в продукте реакции.

Всегда надо помнить, что при составлении уравнений реакций ни один атом не должен потеряться или неожиданно появиться. Поэтому иногда, записав все формулы в уравнении реакции, приходиться уравнивать число атомов в каждой части уравнения – расставлять коэффициенты. Посмотрим еще один опыт

Читайте также  Последовательное и параллельное соединение

(Горение алюминия в кислороде)

Учитель. Запишем уравнение химической реакции (задание 3 в ТПО)

Чтобы записать правильно формулу оксида, вспомним что

Обучающиеся. Кислород в оксидах имеет степень окисления -2, алюминий — химический элемент с постоянной степенью окисления +3. НОК =6

Учитель. Мы видим, что в реакцию вступает 1 атом алюминия, образуется два атома алюминия. Вступает два атома кислорода, образуется три атома кислорода.

Просто и красиво, но неуважительно по отношению к закону сохранения массы веществ- она разная до и после реакции.

Поэтому нам необходимо расставить коэффициенты в данном уравнении химической реакции. Для этого найдем НОК для кислорода.

Обучающиеся. НОК = 6

Учитель. Перед формулами кислорода и оксида алюминия ставим коэффициенты, чтобы число атомов кислорода слева и справа было равно 6.

Учитель. Теперь получаем, что в результате реакции образуется четыре атома алюминия. Следовательно, перед атомом алюминия в левой части ставим коэффициент 4

Еще раз пересчитаем все атомы до реакции и после нее. Ставим равно.

Учитель. Рассмотрим еще один пример

(учитель демонстрирует опыт по разложению гидроксида железа (III))

Учитель . Расставим коэффициенты. В реакцию вступает 1 атом железа, образуется два атома железа. Следовательно, перед формулой гидроксида железа (3) ставим коэффициент 2

Учитель. Получаем, что в реакцию вступает 6 атомов водорода (2х3), образуется 2 атома водорода.

Обучающиеся. НОК =6. 6/2 = 3. Следовательно, у формулы воды ставим коэффициент 3

Учитель. Считаем кислород.

Обучающиеся. Слева — 2х3 =6; справа – 3+3 = 6

Обучающиеся. Количество атомов кислорода ,вступивших в реакцию, равно количеству атомов кислорода, образовавшихся в ходе реакции. Можно ставить равно.

Учитель. Вы хорошо потрудились и , наверное, устали. Я предлагаю вам расслабиться, закрыть глаза и вспомнить какие-либо приятные моменты жизни. У кажого из вас они разные. Теперь откройте глаза и сделайте круговые движения ими сначала по часовой стрелке, затем – против. Теперь интенсивно подвигайте глазами по горизонтали: направо-налево,и вертикали: вверх –вниз.

А сейчас активизируем мыслительную деятельность и помассируем мочки ушей.

Учитель. Продолжаем работу.

В тетрадях с печатной основой выполним задание 5. Работать вы будете в парах. Вам необходимо расставить коэффициенты в уравнених химических реакций. На выполнение задания дается 10 минут.

Учитель. Проверим выполнение задания (учитель опрашивает и выводит на слайд правильные ответы). За каждый правильно поставленный коэффициент – 1 балл.

С заданием вы справились. Молодцы!

Учитель. Теперь давайте вернемся к нашей проблемы.

Ребята, как вы считаете, является ли закон сохранения массы веществ основой для составления уравнений химических реакций.

Обучающиеся. Да, в ходе урока мы доказали, что закон сохранения массы веществ – основа для составления уравнений химических реакций.

Учитель. Все основные вопросы мы изучили. Теперь выполним небольшой тест, который позволит увидеть, как вы освоили тему. Вы должны на него отвечать только “да” или “нет”. На работу дается 3 минуты.

Утверждения

    В реакции Ca + Cl2 —> CaCl2 коэффициенты не нужны. (Да)
  1. В реакции Zn + HCl —> ZnCl2 + H2 коэффициент у цинка 2. (Нет)
  2. В реакции Ca + O2 —> CaO коэффициент у оксида кальция 2. (Да)
  3. В реакции CH4 —> C + H2 коэффициенты не нужны. (Нет)
  4. В реакции CuO + H2 —> Cu + H2O коэффициент у меди 2. (Нет)
  5. В реакции C + O2 —> CO коэффициент 2 надо поставить и у оксида углерода (II) , и у углерода. (Да)
  6. В реакции CuCl2 + Fe —> Cu + FeCl2 коэффициенты не нужны. (Да)

Учитель. Проверим выполнение работы. За каждый правильный ответ – 1 балл.

Учитель. Вы справились хорошо с заданием. Сейчас подсчитайте общее количество набранных баллов за урок и поставьте себе оценку согласно рейтингу, который вы видите на экране. Сдайте мне оценочные листы для выставления вашей оценки в журнал.

Учитель. Наш урок подошел к концу, в ходе которого мы смогли доказать, что закон сохранения массы веществ является основой для составления уравнений реакций, и научились составлять уравнения химических реакций. И, как финальная точка, запишите домашнее задание

Параграф 27,

    упр. 1 – для тех, кто получил оценку “3”
  • упр. 2– для тех, кто получил оценку “4”
  • упр. 3 – для тех, кто получил оценку “5”

Заключительное слово учителя.

Учитель. Я благодарю вас за урок. Но прежде чем вы покинете кабинет, обратите внимание на таблицу (учитель показывает на лист ватмана с изображением таблицы и разноцветными химическими знаками). Вы видите химические знаки разного цвета. Каждый цвет символизирует ваше настроение.. Я предлагаю вам составить свою таблицу химических элементов (она будет отличаться от ПСХЭ Д.И.Менделеева) – таблицу настроения урока. Для этого вы должны подойти к нотному листу, взять один химический элемент, согласно той характеристике, которую вы видите на экране, и прикрепить в ячейку таблицы. Я сделаю это первой, показав вам свою комфортность от работы с вами.

  • F Мне было на уроке комфортно, я получил ответ на все интересующие меня вопросы.
  • F На уроке я достиг цели наполовину .
  • F Мне на уроке было скучно, я ничего не узнал нового.

Источник:
http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/659742/

Какими законами необходимо руководствоваться при составлении уравнений

Владельцы сайта

  • Галина Пчёлкина

Урок №17-18. Закон сохранения массы веществ. Химические уравнения

Закон сохранения массы веществ

Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции?

Чтобы ответить на данный вопрос наблюдайте за следующими видео-экспериментами:

Вывод: Масса веществ до и после реакции не изменилась.

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.

С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.

Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Закон сохранения массы веществ применяется при составлении уравнений химических реакций.

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

В результате химического взаимодействия серы и железа получено вещество – сульфид железа ( II ) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами.

Новые вещества, образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде уравнения химической реакции:

Читайте также  Требования к установке печи и дымохода в бане

Алгоритм составления уравнения химической реакции

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H 2 ; N 2 ; O 2 ; F 2 ; Cl 2 ; Br 2 ; I 2. Между реагентами ставим знак «+», а затем стрелку:

2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

  • Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
  • В данном случае это атомы кислорода.
  • Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

Источник:
http://www.sites.google.com/site/himulacom/zvonok-na-urok/8-klass/urok-no14-zakon-sohranenia-massy-vesestva-himiceskie-uravnenia

Закон сохранения массы веществ

Содержание

  1. История
  2. Суть закона сохранения массы вещества
  3. Что мы узнали?
  • Тест по теме

Закон сохранения массы веществ впервые сформулировал М. В. Ломоносов в 1748 году, а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756 году. Закон сохранения массы веществ Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как всеобщий закон природы.

Рис. 1. М. В. Ломоносов.

Но еще до Ломоносова более 20 веков назад древнегреческий ученый Демокрит предполагал, что все живое и неживое состоит из незримых частиц. позже в XVII веке эти догадки подтвердил Р. Бойль. Он проводил эксперименты с металлом и древесиной и выяснил, что вес металла после нагревания увеличился, а вес золы по сравнению с деревом, наоборот, уменьшился.

Независимо от М. В. Ломоносова закон сохранения массы вещества был установлен в 1789 году французским химиком А. Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

Взгляды Ломоносова и Лавуазье были подтверждены современной наукой. В 1905 году А. Эйнштейн показал, что между массой тела (m) и его энергией (E) существует связь, выражаемая уравнением:

где c – скорость света в вакууме.

Рис. 2. Альберт Эйнштейн.

Таким образом, закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Суть закона сохранения массы вещества

Закон сохранения массы вещества заключается в следующем: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Рис. 3. Закон сохранения массы вещества.

При написании уравнений химических реакций надо следить за соблюдением этого закона. Число атомов элемента в левой и правой частях реакций должно быть одинаковым, так как атомные частицы в химических превращениях неделимы и никуда не исчезают, а лишь переходят из одного вещества в другое. Сущность химической реакции – разрыв одних связей и образование других связей. Поскольку эти процессы связаны с затратой и получением энергии, то знак равенства в реакциях можно ставить, если учтены энергетические факторы, условия реакции, агрегатные состояния веществ.

Очень часто знак равенства, особенно в неорганических реакциях, ставят и без учета необходимых факторов,производя упрощенную запись. При уравнивании коэффициентов вначале уравнивают число атомов металла, потом неметалла, затем водорода и в конце производят проверку по кислороду.

Что мы узнали?

Закон сохранения массы вещества изучают в школе по химии 8 класса, так как понимание его сути необходимо для правильного составления уравнений реакций. О том, что любая материя на земле состоит из невидимых частиц предположил еще древнегреческий ученый Демокрит, а его более современные последователи Ломоносов, Лавуазье, Эйнштейн доказали это экспериментально.

Источник:
http://obrazovaka.ru/himiya/zakon-sohraneniya-massy-veschestv-sut-8-klass.html

Правило Кирхгофа — функции и примеры применения первого и второго правил

Они были разработаны в 1845 г. на основе аксиом сохранения заряда в неизменном магнитном поле.

Законы Кирхгофа универсальны и применяются при изготовлении механических приборов и электротехники.

Первое и второе правила Кирхгофа

Первоначальной функцией законов Кирхгофа является расчет электрических цепей.

Для описания законов вводятся следующие понятия:

  1. Узел — точка, являющаяся местом соединения нескольких проводников гальванической цепи.
  2. Ветвь — участок схемы цепи, расположенный между 2 узлами. По ней протекает электрический ток с разными зарядами, но одинаковой силой.
  3. Контур — закрытый путь, пересекающий несколько ветвей и узлов разветвленной гальванической цепи.

Ветвь и узел способны быть как частями единого контура, так и отдельными элементами нескольких замкнутых путей.

Формулировка первого правила Кирхгофа для разветвленных цепей: в электрических схемах с последовательным соединением источника и приемника энергии суммарное количество токов, текущих по направлению к узлу, эквивалентно общему числу токов, текущих по направлению от узлов. Поток энергии, направленный к узлу, является положительным. Поток частиц, направленных от узла, является отрицательным.

При сложении 2 противоположно направленных токов с одинаковой величиной будет всегда получаться 0. Физический смысл первого закона заключается в том, что заряд не концентрируется в узлах гальванической схемы.

Иными словами, ток остается постоянным на всех участках цепи.

Для расчета силы постоянного тока используется следующая формула: I 1 =I 2 +I 3. При использовании первого правила для расчета переменного тока дополнительно применяются величины мгновенного напряжения. Формула записывается в комплексной форме с учетом активных и реактивных составляющих.

Второй закон Кирхгофа является следствием 3 уравнения Максвелла, доказывающего отсутствие магнитных зарядов в природе. Определение второго правила Кирхгофа: на резисторах закрытого контура гальванической цепи сумма напряжений эквивалентна общему числу ЭДС (электродвижущей силы), рассчитанной для замкнутого пути. Если в составе электрической схемы не присутствуют приборы, вырабатывающие ЭДС, то сумма напряжений будет равняться 0.

Электродвижущая сила равномерно распределяется на всех узлах электрической цепи. Отдельным случаем второго правила является закон Ома, описывающий соотношение ЭДС и силы тока в проводнике.

Второй закон применяется к переменному току.

В этом случае суммарное количество амплитуд ЭДС эквивалентно общей сумме падений напряжений на всех частях гальванической цепи.

При составлении линейных уравнений для второго закона необходимо правильно определить направление падения напряжений.

Для указания знака этой величины был разработан алгоритм:

  1. Отбирается направление обхода замкнутого пути. Падение способно двигаться по или против часовой стрелки.
  2. Выбирается направление движения потоков энергии, текущих через основные части электрической цепи.
  3. Если направление обхода контура совпадает с направлением ЭДС, то ставится положительный знак. Если направления не совпадают, то ставится отрицательный символ.

При совершении полного обхода замкнутого пути величина электродвижущей силы принимает первоначальное значение.

Составление уравнений

При расчете электрической цепи при помощи правил Кирхгофа составляются уравнения токов. Количество уравнений находится в прямой зависимости от числа узлов в цепи. Они используются для описания физических явлений и в промышленном секторе: при изготовлении жидкостных трубопроводов и электрических насосов.

При составлении уравнения нужно руководствоваться следующим алгоритмом:

  1. Выбрать направление потоков заряженных частиц на ветвях, обозначенных на электрической схеме.
  2. Отобрать напряжения с одинаковым направлением обхода закрытого контура.
  3. Выбрать контуры с разными ветвями и узлами для применения второго правила.
Читайте также  Расстояние между опорами и столбами ЛЭП: нормы для линии электропередачи 10 кВ, 110 кВ, 35 кВ

Многие физики сталкиваются с трудностями при составлении линейных уравнений для гальванической цепи, расположенной в сложных непланарных графах — математических объектах с минорами, полученными при помощи стягивания 1 ребра. В этом случае для расчета электрической цепи необходимо составить систему уравнений, где совмещены выражения как для первого, так и для второго законов Кирхгофа.

В них подсчет замкнутых путей осуществляется посредством теории графов — раздела дискретной математики.

Для проверки правильности составления линейных используется потенциальная диаграмма, представляющая собой графическое изображение. Она строится для контура гальванической цепи. Если точки начала и конца диаграммы обладают идентичными потенциалами, независимыми от направления движения тока, то уравнение составлено верно.

Решение задач

В физике присутствует несколько видов задач на законы Кирхгофа, где требуется найти либо силу тока, либо ЭДС источника энергии в гальванической цепи.

Примеры разобранных задач на правила Кирхгофа:

  1. Дана электрическая схема, на которой изображены источники ЭДС и 3 резистора, соединенных параллельно. Необходимо найти величину силы тока в цепи, если указаны значения сопротивления и электродвижущей силы. Изначально нужно определить количество узлов и составить уравнение на основе первого закона. В этом случае входящие и выходящие потоки энергии считаются равными по модулю, но разными по направлению. Затем составляются уравнения с использованием второго закона, учитывая значение ЭДС и сопротивления. После составления уравнения для всех контуров образуется система. Финальным шагом является подстановка известных величин в уравнение.
  2. Дана гальваническая схема, где отображены 5 резисторов и гальванометров. Известны сопротивления 4 из них. Требуется найти силу тока для 1 — 4 резисторов и ЭДС для 4 гальванометра, если известна величина тока для 5 источника. В начале составляется уравнение для первого закона. Получится 2 равенства. После составляются уравнения по второму правилу. Получается 3 равенства для аналогичного количества контуров. В результате получится система из 5 уравнений. Финальным этапом является решение системы с подстановкой известных значений.

Все задачи на законы Кирхгофа решаются методом составления уравнений, основываясь на 2 законах. Проверка результата осуществляется при помощи баланса мощностей.

Во время проведения вычислений рекомендуется использовать онлайн-калькуляторы для работы с большими числами.

Законы Кирхгофа в химии

Кирхгоф в течение долгого времени занимался изучением химии, исследуя тепловые явления. Ученый разработал закон для определения коэффициента температуры при выделении теплоты во время осуществления химической реакции. Оно справедливо как для органических, так и для неорганических веществ. Для описания закона вводятся понятия изобарной и изохорной емкости, обозначаемые символами CP и CV. Закон гласит, что температурный коэффициент химической реакции эквивалентен амплитуде изменения теплоемкости.

В дифференциальной форме закон определяет зависимость изменения теплового эффекта от повышения или понижения температуры. Величина теплового эффекта высчитывается при помощи закона Гесса, где учитывается тип реакции. Тепловыделение будет увеличиваться при эндотермических реакциях, уменьшаться — при экзотермических реакциях.

Во время расчета температуры важно учитывать агрегатное состояние, истинную или среднюю теплоемкость, качественный состав и вид веществ, смешанных в растворе. Эти характеристики являются табличными величинами и указаны в химических справочниках. На основе полученных данных составляется уравнение, устанавливающее аналитическую зависимость теплового эффекта от значения температуры.

Источник:
http://nauka.club/fizika/pravil%D0%B0-kirkhgofa.html