Какой металл не ржавеет

Какой металл не ржавеет?

Если разговор идет именно о ржавчине. То нержавеет любой цветной металл будь то алюмминий, медь, бронза, серебро, золото и так далеп но они и еют свойство окислятся. Если быть точнее то большее колличество из них. Но есть так же металл который и не ржавеет и не окисляется но имеет возможность видоизменятся и переходить в иное не материальное состояние и это всем известная ртуть которая просто напросто испаряется.

Существуют черные и цветные металлы, и если черные подвержены коррозии, то цветные металлы не ржавеют. К черным металлам относятся: железо, сталь, чугун — они все рано или поздно ржавеют.

К цветным же металлам относятся:

  • медь и ее сплавы (бронза, латунь),
  • алюминий и его сплавы (дюралюминий, силумин),
  • свинец,
  • олово,
  • цинк, хром (не зря же ими покрывают железные детали (цинкование, хромирование), защищая их тем самым от коррозии).

Не подвержены ржавчине также и благородные металлы — это золото, платина, серебро.

Кстати, существует нержавеющая сталь, ее еще просто называют «нержавейка». Эта сталь из-за высокого содержания хрома также устойчива к ржавчине.

Есть такой материал — нержавеющая сталь, из которого производят посуду или мангалы и коптильни, но как показала практика — это не правда и товары из такого материала все равно со временем ржавеют.

А вот золото, серебро, медь, латунь, бронза и другие ценные породы металлов не ржавеют.

«Есть такой материал — нержавеющая сталь, из которого производят посуду или мангалы и коптильни, но как показала практика — это не правда и товары из такого материала все равно со временем ржавеют»

— Бред не на чём не основанный, нержавейки ржавеют только тогда когда их производят не правильно, или когда они подвергаются сильному оскилению! — более года назад

Строго говоря, алюминий «ржавеет», поскольку алюминиевые изделия всегда покрыты естественно возникающим тончайшим слоем оксида алюминия. Именно поэтому при пользовании алюминиевой утварью не наступает отравление, — так мне объяснили ещё в советской школе на уроке химии, не вижу причин сомневаться в этой информации.

Однако ржавчиной мы называем только один-единственный — оксид железа, и то не всякий, а лишь (III), описываемый формулой «феррум два о три» Fe2O3.

Выглядит он так:

(Скриншот презентации, которую полностью можно посмотреть здесь).

В реальной жизни практически не приходится иметь дело с металлами в чистом виде, лишь со сплавами, в которых преобладает какой-либо элемент (или несколько). Поэтому если некий металл начинает ржаветь, значит, это сплав, в состав которого входит железо с примесями углерода, и оно уже начало взаимодействовать с водой.

Следы подобных взаимодействий видны и на изделиях из благородных металлов (серебро, золото), которые вдруг потемнели. Неадекватные бабки в таких случаях требуют молиться и каяться за совершённые грехи (если потемнел нательный крестик), выводить шлаки, чистить чакры или срочно заняться кармой (смотря какой именно религией или суеверием они пришиблены), однако всё гораздо проще: неблагородные составляющие сплава окислились, и это стало заметно. Сколько в золоте именно золота, показывает проба в промилле. 375 проба означает 37,5% Au, а всё остальное может быть каким угодно металлом — вот и делайте вывод, стоит ли инвестировать средства в такие побрякушки.

Поэтому ответ прост: не ржавеют все остальные металлы кроме железа.

Источник:
http://www.bolshoyvopros.ru/questions/1895770-kakoj-metall-ne-rzhaveet.html

Защита металла от коррозии

Слово коррозия произошло от латинского corrodere. Оно в переводе означает «разъедать». Чаще всего встречается коррозия металла. Однако есть случаи, когда от коррозии страдают и изделия из других материалов. Ей подвержены и камни, и пластмасса и даже дерево. Сегодня все чаще люди сталкиваются с такой проблемой, как покрытие коррозией памятников архитектуры, сделанных из мрамора и других материалов. Из этого можно сделать, что под такой процесс, как коррозия обозначает разрушение под воздействием окружающей среды

Причины коррозии металлов

Коррозии подвержены большая часть металлов. Данный процесс представляет собой их окисление. Оно приводит к распаду их на оксиды. В простонародии коррозия получила название ржавчина. Она представляет собой порошок мелкого помола светло-коричневого оттенка. На многих видах металлов во время процесса окисления появляется специальный состав в виде скрепленной с ними оксидной пленки. Она обладает плотной структурой, благодаря чему кислороду из воздуха и воде не удается проникнуть в глубокие слои металлов для дальнейшего их разрушения.

Алюминий относится к разряду очень активных металлов. При соприкосновении с воздухом или водой он с теоретической точки зрения должен легко расщепляться. Однако во время коррозии на нем образуется специальная пленка, которая уплотняет его структуру и делает процесс образования ржавчины практически невозможным.

Таблица 1. Совместимость металлов

Таблица 2. Совместимость стали с металлами

В 1 столбце таблицы представлены металлы, которые подвергаются или не подвергаются коррозии с металлами указанными в остальных столбцах таблицы и пропорция соотношения площадей металла, указанного в 1 столбце, к металлам в остальных столбцах таблицы.

Краткое обозначение С, У, Н в таблице означает:

  1. С – сильная и быстрая коррозия металла;
  2. У – умеренная коррозия металла;
  3. Н – Несущественная или ничтожная коррозия металла

Виды коррозии металлов

Сплошная коррозия

Наименее опасно для различных предметов из металлов является сплошная коррозия. Особенно она не опасна для тех ситуаций, когда повреждения аппаратов и оборудования не нарушают технические нормы их дальнейшего использования. Последствия такого вида коррозии можно с легкостью предугадать и скорректировать с учетом этого оборудование.

Местная коррозия

Большую опасность представляет собой местный вид коррозии. В этом случае потери металла не являются большими, но при этом образуются сквозные поражения металлов, что приводит к выходу из строя изделия или оборудования. Такой вид коррозии встречается в изделиях, которые соприкасаются с морской водой или солями. Такое появление ржавчины способствует тому, что поверхность металлической основы разъедается частично и конструкция теряет свою надежность.

Большое количество проблем появляется в местах, где используется хлорид натрия. Данное вещество применяется для устранения снега и льда на дорогах в городских условиях. Данный вид соли заставляет их превращаться в жидкость, которая уже в разбавленном с солями виде попадает в городские трубопроводы. В этом случае не помешает защита металлов от коррозии. Все подземные коммуникации при попадании воды с солями начинают разрушаться. В Соединенных Штатах Америки подсчитано, что в год на проведение ремонтных работ в области дорожных коммуникации уходит примерно два миллиарда долларов. Однако от данного вида соли для обработки дорожного полотна коммунальщики пока не готовы отказаться из-за низкой его стоимости.

Способы защиты металлов от коррозии

С самых давних времен люди старались защитить металлы от появления коррозии. постоянные атмосферные осадки приводили в негодность металлические изделия. Именно поэтому люди смазывали их различными жирными маслами. Затем они стали использовать для этой цели покрытия из других металлов, которые не ржавеют.

Современные химики тщательно прорабатывают все возможные методы борьбы с коррозией металлов. Они создают специальные растворы. Разрабатываются способы уменьшения рисков образования на металлах коррозии. Примером может служить такой материал, как нержавеющая сталь. Для ее производства использовалось железо, дополненное кобальтом, никелем, хромом и другими элементами. При помощи добавленных к нему элементов удалось создать металл, на котором более длительное время не образуется налет ржавчины.

Для защиты различных металлов от коррозии разработаны различные вещества, которые активно применяются в современной промышленности. Лаки и краски активно сегодня используются. Они являются наиболее доступными средствами для защиты от ржавчины изделий из металлов. Они создают преграду для попадания на сам металл воды или воздуха. Это позволяет на время отсрочить появление коррозии. Следует при нанесении краски или лака учитывать толщину слоя и поверхность материала. Для достижения наилучшего результата покрытие металлов от коррозии должно производиться ровным и плотным слоем.

Химическая коррозия металлов

По сущности коррозия может быть двух видов:

Химическая коррозия представляет собой образование ржавчины при определенных условиях. В промышленных условиях не редко приходится сталкиваться с данным типом коррозии. Ведь на многочисленных современных предприятиях металлы перед созданием из них изделий нагреваются, что приводит к образованию такого процесса, как ускоренная химическая коррозия металла. При этом образуется окалина, которая является продуктом его реакции на появление ржавчины во время нагревания.

Ученые доказали, что современное железо гораздо больше подвержено образованию ржавчины. В нем содержится большое количество серы. Она появляется в металле из-за того, что во время добывания железных руд используется каменный уголь. Сера из него попадает в железо. Современные люди удивляются то, что древние предметы их этого металла, которые находят на раскопках археологи, сохраняют свои внешние качества. Это связано с тем, что в древности для добычи железа использовался древесный уголь, который практически не содержит серы, которая могла бы попасть в металл.

Такие металлы подвергаются коррозии

Среди металлов встречаются различные виды. Чаще всего для созданий каких-либо предметов или объектов применяется железо. Именно из него изготовляется в двадцать раз больше изделий и объектов, чем из других металлов вместе взятых. Данный металл стали использовать активнее всего в промышленности в конце 18 начале 19 веков. Именно в этот период был построен первый чугунный мост. Появилось первое морское судно, для изготовления которого была использована сталь.

В природе самородки железа встречаются в редких случаях. Многие люди считают, что данный металл не является земным, его относят к космическим или метеоритным. Именно он является наиболее подверженным к образования коррозии.

Также есть и другие металлы, подверженные коррозии. Среди них выделяются медь, серебро, бронза.

Видео » Коррозия металлов, способы защиты от неё»

Источник:
http://lkmprom.ru/clauses/tekhnologiya/korroziya-metalla-kak-zaschitit-metally-ot-poyavle/

Коррозия металлов. Виды коррозии металлов

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь. Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Читайте также  Как и чем покрасить трубы в ванной: подробная инструкция

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Источник:
http://zadachi-po-khimii.ru/obshaya-himiya/korroziya-metallov.html

Коррозия металлов

Почти все металлы, приходя в соприкосновение с окружающей их газообразной или жидкой средой, более или менее быстро подвергаются с поверхности разрушению. Причиной его является химическое взаимодействие металлов с находящимися в воз духе газами, а также с водой и растворенными в ней веществами.

Всякий процесс химического разрушения металлов под действием окружающей среды называется коррозией.

Проще всего протекает коррозия при соприкосновении металлов с газами. На поверхности металла образуются соответствующие соединения: окислы, сернистые соединения, основные соли угольной кислоты, которые нередко покрывают поверхность плотным слоем, защищающим металл от дальнейшего воздействия тех же газов.

Иначе обстоит дело при соприкосновении металла с жидкой средой — водой и растворенными в ней веществами. Образующиеся при этом соединения могут растворяться, благодаря чему коррозия распространяется дальше вглубь металла. Кроме того, вода, содержащая растворенные вещества, является проводником электрического тока, вследствие чего постоянно возникают электрохимические процессы, которые являются одним из главных факторов, обусловливающих и ускоряющих коррозию.

Чистые металлы в большинстве случаев почти не подвергаются коррозии. Даже такой металл, как железо, в совершенно чистом виде почти не ржавеет. Но обыкновенные технические металлы всегда содержат различные примеси, что создает благоприятные условия для коррозии.

Чтобы понять, почему примеси влияют на коррозию металлов, посмотрим, что происходит, когда два различных металла соприкасаются друг с другом, находясь во влажном воздухе.

Положим, например, что в медном листе находится алюминиевая заклейка (рис. 129). Так как все твердые тела адсорбируют на своей поверхности влагу из воздуха, то и поверхность наших металлов будет покрыта тончайшей пленкой воды. Но вода, как известно, диссоциирует, хотя и в ничтожной степени, на ионы Н • и ОН’; кроме того, растворенный в воде углекислый газ образует угольную кислоту, диссоциирующую по уравнению:

Следовательно, медь и алюминий будут как бы погружены в раствор, содержащий ионы H • , ОН’ и НСО3‘. Получается гальванический элемент, в котором отрицательным электродом служит алюминий, а положительным — медь. Ввиду тесного соприкосновения обоих металлов элемент этот замкнут и непрерывно работает: алюминий посылает свои ионы в раствор, а избыточные электроны переходят к меди, у поверхности которой они разряжают ионы водорода. В растворе ионы Аl ••• соединяются с ионами ОН’, образуя Аl(ОН)3, выделяющийся у поверхности алюминия:

2Аl—6е — = 2Аl ••• 6Н • + 6e — = 3Н2

Таким образом, алюминий довольно быстро подвергается коррозии.

Несколько сложнее происходит коррозия железа, находящегося в контакте с каким-нибудь менее активным металлом, например с той же медью. Железо посылает в раствор двухвалентные ионы Fe •• , которые, соединяясь с гидроксильными ионами, превращаются в Fе(ОН)2. В то же время электроны железа переходят к меди и разряжают у ее поверхности ионы водорода.

Рис 130. Растворение в кислотах химически чистого цинка при контакте с медной или платиновой проволочкой.

В присутствии кислорода воздуха и воды Fe(ОН)2 окисляется в гидрат окиси железа Fe(OH)3 , образующий ржавчину:

В разобранных нами случаях причиной коррозии алюминия и железа являлся контакт с менее активным металлом — медью. Такую же роль, как и медь, играют различные примеси, всегда содержащиеся в технических металлах и обусловливающие их коррозию. Например, обыкновенная сталь при исследовании ее под микроскопом оказывается состоящей из мелких зерен чистого железа, тесно перемешанных с зернами карбида железа — цементита Fe3C — и других примесей. Получается бесконечное множе ство так называемых гальванических пар, в которых зерна цементита играют роль положительных электродов, а зерна железа — отрицательных. При соприкосновении с влажным воздухом возникают гальванические токи, вызывающие коррозию стали. Аналогичным образом примеси способствуют коррозии и других металлов.

Коррозия алюминия, цинка, железа и вообще металлов, стоящих в ряду напряжений слева от водорода, сводится по существу к вытеснению ионов водорода из раствора и переходу самого металла в раствор в виде ионов. Ускоряющее влияние контакта с менее активным металлом при таких процессах можно наглядно иллюстрировать следующим опытом.

В пробирку с разбавленным раствором кислоты бросим кусочек химически чистого цинка. Выделения водорода почти не наблюдается. Отсутствие реакции объясняется тем, что начинающие переходить в раствор ионы Zn •• гидратируются и образуют вокруг цинка слой положительно заряженных ионов. Этот слой не дает возможности ионам водорода подходить вплотную к поверхности цинка и получать от него электроны, вследствие чего дальнейшее растворение цинка приостанавливается. Но стоит только коснуться поверхности цинка платиновой или медной проволочкой, как вследствие образования гальванической пары тотчас же начинается энергичное выделение водорода у поверхности проволочки. Электроны переходят от цинка к платине (или меди) и с нее на ионы водорода, а цинк постепенно растворяется, посылая новые ионы в раствор (рис. 130).

Читайте также  Принцип работы электродвигателей

Такой же эффект вызывает прибавление к раствору кислоты нескольких капель раствора сернокислой меди CuSO4. Цинк вытесняет медь и покрывается с поверхности рыхлым слоем металлической меди. Получается гальваническая пара цинк —медь, работающая, как в элементе Вольта. Поэтому «омедненный» цинк энергично вытесняет водород из кислоты, но выделение водорода происходит у поверхности меди, а не у поверхности цинка (рис. 131).

Продажный цинк, содержащий примеси, действует аналогичным образом.

На скорость растворения металла в кислоте, помимо примесей, влияют и другие факторы: структура металла, способ его обработки, свойства кислоты и т. п. Но во всех случаях процесс растворения может быть замедлен прибавлением к кислоте некоторых веществ, главным образом органических, получивших название ингибиторов (замедлителей коррозии).

Рис. 131. Схема растворения омедненного цинка в серной кислоте

Действие ингибиторов иногда настолько эффективно, что некоторые металлы и сплавы становятся практически нерастворимыми в кислотах, к которым прибавлен соответствующий ингибитор.

Замедляя растворение металла, ингибиторы в то же время совершенно не влияют на скорость растворения окислов металлов, их гидроокисей и других веществ. Поэтому прибавление ингибиторов позволяет освобождать с помощью кислот поверхность металла от покрывающих ее соединений (например, удалять ржавчину с железа, накипь со стенок котлов), почти не затрагивая самого металла.

Так как элементы расположены в ряду напряжений по убывающей активности, то следовало бы ожидать, что чем левее стоит элемент в ряду напряжений, тем легче он будет подвергаться корро-зии. В действительности это не всегда имеет место. Например, алюминий, стоящий недалеко от начала ряда, довольно хорошо сопротивляется атмосферной коррозии. Причиной такой устойчивости является образование на поверхности алюминия тонкой, но очень плотной и эластичной пленки окиси алюминия, предохраняющей алюминий от соприкосновения с окружающей средой. И действительно, стоит только тем или иным способом уничтожить эту пленку, как алюминий начинает быстро корродировать.

Смочим хорошо вычищенную наждачной бумагой алюминиевую пластинку раствором сулемы HgCl2. Алюминий вытесняет ртуть, которая образует с ним сплав — ртутную амальгаму, препятствующую возникновению защитной пленки. Поэтому оставленная на воздухе пластинка быстро покрывается рыхлыми хлопьями гидрата окиси алюминия — продуктом коррозии алюминия.

В данном случае коррозия усиливается еще и вследствие контакта алюминия с малоактивным металлом — ртутью.

Понятно, что образующийся на поверхности металла слой окислов или каких-либо других соединений может служить защитой только в том случае, если он является достаточно плотным, прочным и нерастворимым в воде. В противном случае он не может помешать коррозии. Так, например, появляющаяся на железе ржавчина совершенно не защищает его от дальнейшей коррозии, так как слой ее оказывается очень рыхлым, хрупким и слабо пристающим к поверхности металла.

Вещества, способствующие возникновению на металле защитной пленки, носят название пассивирующих агентов. Таковыми для большинства металлов являются сильные окислители. Для железа хорошим пассивирующим агентом служат также ионы ОН’.

Как уже указывалось раньше , многие довольно активные металлы становятся пассивными после обработки их концентрированной азотной кислотой вследствие образования на поверхности металла тончайшего невидимого слоя окиси, препятствующего дальнейшему окислению. Существование таких «оксидных пленок» доказано различными методами: поляризацией отраженного света, рентгенографическим путем и др. Теория «оксидных пленок» была подробно развита в начале нынешнего столетия В. А. Кистяковским (1865—1952), работы которого имели большое значение для борьбы с коррозией.

Некоторые вещества разрушают или ослабляют защитную пленку металла, тем самым способствуя коррозии. Такие вещества называются активирующими агентами или активаторами.

Наиболее энергичным активатором для всех металлов является ион Cl. Быстрое разрушение подводных металлических частей морских судов объясняется главным образом присутствием ионов Сl’ в морской воде. Очень энергичными активаторами для многих металлов являются ионы водорода. Кислород, растворенный в воде, также сильно ускоряет коррозию, связывая первичные продукты реакции (например, окисляя Fe(OH)2 в Fe(OH)3 в случае коррозии железа) и тем самым предотвращая возможность обратной: реакции.

Убытки, причиняемые коррозией металлов, огромны. Вычиc-лено, например, что вследствие коррозии ежегодно гибнет такое количество железа, которое равно приблизительно 1 /4 всей мировой его добычи за год. Поэтому изучению процессов коррозии и отысканию наилучших средств ее предотвращения уделяется очень много внимания.

Способы борьбы с коррозией чрезвычайно разнообразны. Наиболее простой из них заключается в защите поверхности металла от непосредственного соприкосновения с окружающей средой путем покрытия масляной краской, лаком, эмалью или, наконец,, тонким слоем другого металла. Особенный интерес с теоретической точки зрения представляет покрытие одного металла другим. Посмотрим, к каким результатам оно приводит.

Так как коррозия всегда возникает на поверхности металла, то до тех пор, пока слой защищающего металла является сплошным, изделие ведет себя так, как если бы оно целиком состояло из защищающего металла. Но если в защитном слое появляются царапины, трещины и т. п., обнажающие поверхность защищаемого металла, то в этих местах сейчас же создаются условия, благоприятствующие коррозии. Однако процесс коррозии будет протекать совершенно различно в зависимости от относительного положения обоих металлов в ряду напряжений.

Разберем сперва случай так называемого катодного по крытия, когда защищающий металл стоит в ряду напряжений правее защищаемого. Типичным примером может служить корро зия луженого, т.е. покрытого оловом, железа (белая жесть).

Олово само по себе очень устойчиво и хорошо защищает металл, пока слой его на железе является сплошным. При нарушении целостности защитного слоя и соприкосновении обнаженного места с влагой образуется гальваническая пара, в которой положительным электродом (катодом) служит олово , а отрицательным (анодом) —железо. Поток электронов направляется от обнаженной поверхности железа к олову и здесь разряжает ионы водорода, а железо подвергается разрушению, посылая все новые и новые ионы в раствор (рис. 132, а). Таким образом, в месте повреждения луженое железо ржавеет гораздо быстрее, чем нелуженое.

Рис. 132. Схема коррозии: а — луженого к б — оцинкованного железа

Совершенно иначе протекает коррозия, если защищающий металл стоит в ряду напряжений левее защищаемого, как, например, при покрытии железа цинком (анодное покрытие). В этом случае при повреждении защитного слоя тоже получается гальваническая пара, но теперь железо служит катодом, а анодом — цинк, и электроны переходят от цинка к железу; поэтому цинк разрушается, а железо остается защищенным (рис. 132, б). Защита действует до тех пор, пока не будет разрушен весь слой цинка, на что потребуется довольно много времени.

Из сказанного ясно, что для защиты от коррозии целесообразнее покрывать поверхность металла слоем более активного металла, чем слоем менее активного. Однако другие соображения нередко заставляют применять также покрытия из менее активных металлов.

На практике чаще всего приходится принимать меры к защите железа, как металла, особенно подверженного коррозии. Кроме цинка, из более активных металлов для этой цели иногда применяют кадмий, действующий подобно цинку. Из менее активных металлов для покрытия железа чаще всего применяют олово, медь и никель.

Покрытые никелем железные изделия имеют красивый вид, чем объясняется широкое распространение никелирования.

При повреждении слоя никеля коррозия происходит менее-интенсивно, чем при повреждении слоя меди (или олова), так как разность потенциалов для пары никель — железо гораздо меньше, чем для пары медь — железо.

Из других способов борьбы с коррозией упомянем еще о способе, протекторов, заключающемся в том, что защищаемый металлический объект приводится в контакт с большой поверхностью более активного металла. Так, в паровые котлы вводят листы цинка, находящиеся в контакте со стенками котла и образующие с ними гальванический элемент.

Вы читаете, статья на тему Коррозия металлов

Источник:
http://znaesh-kak.com/x/x/%D0%BA%D0%BE%D1%80%D1%80%D0%BE%D0%B7%D0%B8%D1%8F-%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D0%BE%D0%B2

Какой металл не подвержен коррозии

КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ

1. Коррозия (от латинского « corrodere » разъедать) – самопроизвольный окислительно-восстановительный процесс разрушения металлов и сплавов вследствие взаимодействия с окружающей средой.

2. Виды коррозии: химическая и электрохимическая

I . Химическая – коррозия, обусловленная взаимодействием металлов с веществами, содержащимися в окружающей среде, при этом происходит окислительно-восстановительное разрушение металла без возникновения электрического тока в системе.

К химической коррозии относятся:

газовая коррозия — коррозионное разрушение под воздействием газов при высоких температурах;

коррозия в жидкостях-неэлектролитах.

— химическая коррозия, обусловленная взаимодействием металлов с газами.

Основной окислитель – кислород воздуха.

Процессы химической коррозии железа:

2 Fe + O 2 = 2 FeO

3 Fe + 3 O 2 = FeO · Fe 2 O 3 (смешанный оксид железа ( II , III ) )

4 Fe + 3 O 2 + 6 H 2 O = 4 Fe ( OH )3 (на воздухе в присутствии влаги)

Fe ( OH )3 t ° C → H 2 O + FeOOH (ржавчина)

2 Fe + 3 Cl 2 = 2 FeCl 3

Химическая коррозия в жидкостях-неэлектролитах

Жидкости-неэлектролиты — это жидкие среды, которые не являются проводниками электричества. К ним относятся: органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется. Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород — химическая коррозия усилится.

Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.

Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:

— подход окислителя к поверхности металла;

— хемосорбция реагента на поверхности;

— реакция окислителя с металлом (образование оксидной пленки);

— десорбция оксидов с металлом (может отсутствовать);

— диффузия оксидов в неэлектролит (может отсутствовать).

Для защиты конструкций от химической коррозии в жидкостях-неэлектролитах на ее поверхность наносят покрытия, устойчивые в данной среде.

II . Электрохимическая – окислительно-восстановительное разрушение сплавов и металлов, содержащих примеси, с возникновением электрического тока в системе.

АНОД (более активный металл) – разрушается

КАТОД (менее активный металл или примесь неметалла, способного + ē) – восстанавливается среда

Ме 0 – n ē → Me n + (процесс окисления)

кислая среда: 2 H + + 2ē → H 2 (процесс восстановления)

влажный воздух: O 2 + 2 H 2 O + 4ē → 4 OH — (процесс восстановления)

Электрохимическая коррозия железной детали с примесями меди во влажном воздухе.

А: Fe 0 — 2ē → Fe 2+ (Окисление)

К: O 2 + 2 H 2 O + 4ē → 4 OH — (процесс восстановления)

Итог: 2 Fe + O 2 + 2 H 2 O = 2 Fe ( OH )2 (белая ржавчина)

4 Fe ( OH )2 + 2 H 2 O + O 2 = 4 Fe ( OH )3 (бурая ржавчина)

1). Металлические покрытия – анодное (покрытие более активным металлом Zn , Cr ) – оцинкованное железо; катодное (покрытие менее активным металлом Ni , Sn , Ag , Au ) – белая жесть (лужёное железо) – не защищает от разрушения в случае нарушения покрытия.

2). Неметаллические покрытия – органические (лаки, краски, пластмассы, резина — гумирование, битум);

Читайте также  Провод для заземления: сечение, марка, цвет

3). Протекторная защита – присоединение пластины из более активного металла ( Al , Zn , Mg ) – защита морских судов.

4). Электрохимическая (катодная) защита – соединение защищаемого изделия с катодом внешнего источника тока, вследствие чего изделие становится катодом. Ток идёт в противоположном направлении.

5). Добавление ингибиторов ( в зависимости от природы металла – NaNO 2, Na 3 PO 4, хромат и бихромат калия, ВМС органические соединения), адсорбируются на поверхности металла и переводят его в пассивное состояние.

Задания и вопросы по теме: «Коррозия металлов и сплавов»

№1. При электрохимической коррозии на поверхности анода протекает процесс

А) Восстановления ионов водорода; Б) Окисления металла;

В) Восстановление молекул кислорода; Г) Окисления молекул водорода.

№2. Почему считают, что рядом со стальной коронкой (Fе) не рекомендуется ставить золотую (Аu)?

№3. Вот история, произошедшая с норвежским грузовым судном «Анатина». Трюмы теплохода, направлявшегося к берегам Японии, были заполнены медным концентратом. Корпус судна сделан был из стали. Внезапно судно дало течь. Объясните, что произошло.

№4. Какой из компонентов загрязненного городского воздуха является наиболее коррозионно-активным по отношению к металлам, особенно при повышенной влажности:
а) N2; б) СО; в) SO2.

№5. Рассмотрите рисунок, ответьте на вопросы:

Обратите внимание! В восстановлении кислорода участвуют ионы Н + . Если концентрация Н + понижается (при повышении рН), восстановление О2 затрудняется. Замечено, что железо, находящееся в контакте с раствором, рН которого выше 9–10, не корродирует.

С усилением коррозии в присутствии солей часто сталкиваются автомобилисты в тех местностях, где в зимнее время для борьбы с гололедицей дороги обильно посыпают солью. Влияние солей объясняется тем, что образуемые ионы создают электролит, необходимый для возникновения замкнутой электрической цепи.

  • Определить тип коррозии в каждом стакане.
  • В каких стаканах железный гвоздь прокорродировал сильнее, в каких меньше, а в каких коррозии не подвергся? Почему?
  • Объясните, что усиливает коррозию, а что ее замедляет?

№6. Рассмотрите процесс коррозии при соединении медной трубы с гальванизированной (оцинкованной) стальной трубой, если обе трубы находятся в земле.

№7. Почему цинк не используют при изготовлении консервных банок для покрытия им железа? Почему оцинкованное железо идёт на изготовления вёдер, баков?

№8. Как будет протекать процесс коррозии в том случае, если железную водосточную трубу прибить к дому алюминиевыми гвоздями?

№9. При изготовлении луженого железа (белой жести) — железо покрывают оловом, какое это покрытие — А) Анодное; Б) Катодное? Запишите электродные процессы

№10. Знаменитая Кутубская колонна в Индии близ Дели вот уже полторы тысячи лет стоит и не разрушается, несмотря на жаркий и влажный климат. Сделана она из железа, в котором почти нет примесей. Объясните, почему в данном случае статуя не подвергается коррозии

Источник:
http://www.sites.google.com/site/himulacom/zvonok-na-urok/11-klass—cetveertyj-god-obucenia/urok-no36-ponatie-o-korrozii-metallov-sposoby-zasity-ot-korrozii

Коррозия металлов. Все виды особенности и факты

Коррозия — разрушительный процесс, который пагубно влияет на металлические конструкции. Процесс может иметь как химические, так и химико-физические причины. Чаще всего причиной возникновения таких проблем является неустойчивость материала к воздействию внешних факторов, чаще всего термодинамического характера.

Чаще всего ржавчина прогрессирует исключительно в верхних слоях материала, но иногда проникает и вглубь.

Виды коррозийных процессов

Коррозия металлов имеет большое количество разновидностей. Но в основном все виды подразделяются на два основных типа:

  1. Коррозия общего характера. Она называется равномерной, а встречается чаще всего. Причиной возникновения такой коррозии считаются химические и электрохимические реакции. Такая разновидность коррозии приводит к отрицательному воздействию на всю поверхность материала и металлической конструкции. При этом процесс может быть равномерным или неравномерным. При неравномерном распределении ржавчины, она на одном участке разъедает материала быстрее и сильнее, чем на соседнем.
  2. Местный вид коррозии. Возникает на одном участке, где и развивается.
  3. Местная пятнами. Возникает на отдельных участках материала.
  4. Язвенная, ее еще называют питтинг.
  5. Межкристаллитная — такая коррозия возникает на пограничных областях металлического кристалла. Чаще вспыхивает в тех материалах, которые содержат в составе никель и алюминий. Металл в кратчайшие сроки остается без первоначальных показателей прочности и эластичности.
  6. Растрескивающая.
  7. Подповерхностная.
  8. Коррозия под током — возникает под воздействием блуждающего или постоянного тока.
  9. Коррозийная кавитация — вариант разрушений, когда помимо ржавчины на металл воздействует и ударная сила.
  10. Фреттинг-коррозия — одновременное воздействие ржавчины и вибрации, которые совместно приводят к разрушению металлических конструкций. варианты.

Есть еще различия и по механизму воздействия.

Химический вариант разрушения

Это разновидность процесса, при котором рушатся связи металлические, а между атомами веществ материала и окислителей возникает химическая взаимодействие. В такой ситуации не образуется электрический ток между различными областями материала. В свою очередь такой вид разрушения подразделяется еще на два типа:

  1. Газовый вариант. Получается при воздействии агрессивных азов, а также паров в сочетании с высокими показателями температуры. Если материал относится к активным, то воздействие таких сред может привести к окончательному разрушению материала по всей поверхности. К таким средам относятся: сероводород, диоксид серы, пары воды, кислород. Такой вид разрушительного процесса чаще всего заметен в промышленности и на химическом производстве.
  2. Жидкостный вариант ржавчины. Случается в неэлектролитических веществах. Если имеется даже небольшое содержание жидкости, то процесс становится электрохимическим.

Важно, что при химической разновидности коррозии металл разрушается со скоростью протекания химической реакции.

Электрохимическая ржавчина

Этот вариант разрушительных процессов возникает в среде электролитов. Процесс сочетается с возникновением тока. В итоге из решетки вещества убирается атом и одновременно протекают два процесса:

  1. Анодный — вещество материала в качестве ионов входит в раствор.
  2. Катодный — те вещества, которые получаются в предыдущем процессе, связываются при помощи деполяризатора.

Собственно отвод электродов так и называется — деполяризация, а непосредственно вещества, которые способствуют данному процессу именуются деполяризаторами.

Наиболее часто возможно встретить вариант разрушения с водородной и кислородной деполяризацией.

Разновидность металлов по отношению к коррозии электрохимического вида

Все металлы по отношению к такому виду ржавчины делятся на 4 подтипа:

  1. Активные вещества или материалы с высокими параметрами термодинамической нестабильности. Это все щелочные виды металлов. Они подвержены влиянию коррозии даже в абсолютно нейтральных средах, где нет кислорода и других окислительных веществ.
  2. Средние материалы по уровню активности — в таблице Менделеева расположены между кадмием и водородом. Это материалы отличающиеся термодинамической нестабильностью в агрессивных кислых средах.
  3. Материалы с низкими параметрами активности или вещества с промежуточными параметрами стабильности по термодинамике. Противостоят коррозии в кислых и нейтральных атмосферах, при отсутствии кислорода.
  4. Благородные разновидности веществ. Это материалы с высокой стабильностью. Они поддаются коррозии только в кислых средах и в присутствии сильнейших окислителей.

Такие типы ржавчины могут разделяться по видам агрессивных сред, в которой она протекает:

  1. Процесс в электролитных веществах — процесс протекает в жидких кислых, щелочных средах, а также в простой воде.
  2. Атмосферный вид — любой газовый вариант с наличием влажности. Это очень распространенный вариант электрохимического разрушения металла. Главное, чтобы в данной среде была влажность. Только при таких условиях есть возможность протекания необходимых реакций.

При электрохимической вариации процесса одна часть металла служит анодом, а другая — катодом. Последним становятся те участки металла, куда больше поступает кислорода.

В зависимости от воздействующих сред есть и другие разновидности коррозий:

  1. Почвенная — протекает с разной степенью интенсивности. Все зависит от агрессивности почвы. В таких условиях происходит подземные разрушительные процессы на трубах и прочих подземных конструкциях.
  2. Аэрационная — причиной служит неравномерный приток воздуха к разным участкам материала.
  3. Морская — процесс проходит строго в соленой воде.
  4. Биокоррозия — результат жизнедеятельности бактерий и микроорганизмов. Они выделяют газы, которые и приводят к возникновению разрушительных процессов.
  5. Электрокоррозия — является результатом воздействия блуждающего тока.

Кроме того основные виды коррозии могут различаться в зависимости от типа металла, на которых они возникают.

Разрушительные процессы на меди

Медь считается достаточно стабильным металлом. Ее стабильность замечена в следующих средах:

  1. Атмосфера.
  2. Морская и пресная вода.
  3. Галогеновые среды со специальными условиями.
  4. В кислотах-неокислителях.

При этом медные конструкции отличаются нестабильностью в следующих условиях:

  1. При контакте с соединениями серы, а также с самой серой в чистом виде.
  2. При погружении в растворы солей-окислителей.
  3. В агрессивной воде.

Также часто встречается и атмосферная коррозия меди.

Ржавление железа

Еще один популярный элемент, который часто подвергается действию ржавчины — железо. Чаще всего железо подвергается разрушительным процессам в результате контакта с воздухом или кислотным раствором.

Способы защиты от коррозии металлов

Используется несколько основных методов по защите металлических конструкций от разрушительного воздействия коррозии. При использовании защиты в основном делается упор на то, что ржавчина без внешних повреждений не может проникнуть к металлу.

При этом важно, что защитные покрытия выполняют не только предохраняющую функцию, но и придают металлическим конструкциям симпатичный внешний вид.

Прежде всего, это покрытия, которые разделяются на три типа, по материалам нанесения:

  1. Металлические.
  2. Неметаллические.
  3. Химические.

Каждый из них имеет свои особенности и преимущества.

Металлические покрытия. Это способ, при котором на металлическую конструкцию наносят тонким слоем другой вид металла, который более стабилен к разрушительному действию коррозии при аналогичных условиях.

Покрытие может называться анодным или катодным в зависимости от того более активный или менее активный металл сверху.

Неметаллические покрытия. Они подразделяются на органические и неорганические. Чаще всего используется высокополимерный пластик, стекло и керамика. Из органических известны и популярны лаки, битум, краски, а также резина.

Химические покрытия. Это вариант, при котором на поверхности металлической конструкции при помощи химической обработки, наносится пленка, устойчивая к воздействию коррозии. Таких пленок может быть несколько разновидностей:

  1. Оксидирование — нанесение оксидных пленок.
  2. Фосфатирование — получение пленки фосфатов.
  3. Азотирование — пленка из активного азота.
  4. Воронение стали.
  5. Цементация — соединение с углеродом.

Также в качестве защиты используется изменение состава коррозийной среды. Еще один вариант защиты — ввести в металл технические соединения, которые повышают стойкость материала к разрушительным действиям коррозии.

Протекторный вид — вариант электрохимической защиты, при которой к конструкции присоединяются пластины с более активным металлом. При этом протектор — материал с отрицательными параметрами потенциала, а защищаемый материал — катод.

Заключение

Процесс коррозийной порчи материала разнообразный и многосторонний. Нюансы зависят от среды, от вида и активности металла, а также от дополнительных факторов влияния. Поэтому существует много способов защиты металлических конструкций от разрушительного влияния ржавчины и агрессивных сред.

Чаще всего применяются защитные пленки, как металлические, так и неметаллические. В отдельных случаях металл специально подвергают химической обработке. Наиболее стабильны по отношению к коррозии считаются благородные металлы, в том числе золото и платина.

Источник:
http://dokmetall.ru/vidy-korrozii-metallov/