Вращающий момент электродвигателя

Вращающий момент электродвигателя

В двигателях постоянного тока вращающий момент определяется выражением М ≡ ФIя, т.е. он пропорционален потоку и току якоря. В асинхронном двигателе момент создается вращающимся потоком Ф и током ротора I2. Он может быть выражен

Следовательно, момент пропорционален потоку и активной слагающей тока ротора I2 cos Ψ2, так как только активная слагающая тока определяет мощность, а значит и момент.

На рис. 10-20 представлена схема включения короткозамкнутого двигателя. Если пустить двигатель, включив рубильник 1, то в первый момент пуска, когда п2 = 0, a s = 1, наведенная в роторе 2 э. д. с. Е2 и пусковой ток I2п максимальны. Однако, пусковой момент Мп не будет максимальным, а в 2—2,5 раза меньше максимального. Векторная диаграмма для цепи ротора (рис. 10-21), построенная подобно изображенной на рис. 9-9, показывает причину этого.

Рис 10-20. Схема включения короткозамкнутого асинхронного двигателя.

Обычно в роторе х2 во много раз больше r2 и угол Ψ2, на который ток I2п отстает от э. д. с. Е2 велик. Поэтому активная слагающая тока I2п cos Ψ2, а значит и пусковой момент Мп малы. В современных асинхронных двигателях Мп/Мп = 1 — 1,5, хотя I2п/ Iн≈ 4,5—6,5.

Это же явление по другому объясняется на рис. 10-19 и 10-22.

Рис. 10-21. Векторная диаграмма в цепи ротора.

При описании принципа работы двигателя (рис. 10-19) было предположено, что ток I2 совпадает по фазе с э. д. с. Е2, т. е. что он активный ( Ψ2 = 0). На рис. 10-22 представлен момент пуска, когда направление э. д. с. в проводах ротора соответствует обозначенному на рис. 10-19, а ток показан отстающим от э. д. с. на угол Ψ2. Тогда шесть проводов ротора (три под полюсом N и три под полюсом S) создают усилия, действующие в направлении вращения потока, а два провода вызывают противодействующие усилия. В результате этого вращающий момент будет тем меньше, чем больше сдвиг фаз между током I2 и э. д. с. E2.

Рис. 10-22. Ток в роторе двигателя в момент пуска.

По мере увеличения скорости вращения ротора реактивное сопротивление обмотки ротора x2s = x2s уменьшается, а вместе с этим уменьшается угол Ψ2, так как сопротивление r2 ≈ const. Наступает такое положение (рис 10-21), когда при некотором скольжении sм ≈ 0,1—0,15 реактивное сопротивление x2s становится равным активному r2, угол Ψ — 45° и э. д. с. E2s уравновешивает два равных падения напряжения I 2r2 и I2x2s.В это время активная слагающая тока I2 cos Ψ2 и вращающий момент М м становятся максимальными, несмотря на некоторое уменьшение тока I2.

Обычно Мм/Мм = 1,8—2,5 и называется способностью к перегрузкe.

При дальнейшем разгоне ротора x2s становится значительно меньшим, чем r2, им можно пренебречь и считать ток ротора активным (I2I2 cos Ψ 2). Так как E2s = E2s тоже продолжает уменьшаться, то вместе с током I2 уменьшается и вращающий момент.

Максимальная скоростьn вращения будет при холостом ходе двигателя и тогда n 2n 1 , a s ≈ 0. Зависимость вращающего момента от скольжения М = f (s) представлена на рис. 10-23.

Рис. 10-23. Зависимость вращающего момента двигателя от скольжения.

Нормальная работа двигателя возможна только на участке кривой при скольжениях s от нуля до sм, так как в этом случае при увеличении тормозного момента и значит s вращающий момент возрастает. На участке от s = sм до s = 1 работа двигателя неустойчива. Номинальный момент Мн соответствует обычно номинальному скольжению sн = 1—6%.

Поток Ф пропорционален напряжению U1, подводимому к трансформатору. Сказанное остается в силе и для асинхронного двигателя. Так как М ≡ ФI2 cos Ψ 2, то можно написать, что

Отсюда можно сделать очень важный для асинхронных двигателей вывод

т. е. вращающий момент пропорционален квадрату подведенного к статору напряжения. Таким образом, падение напряжения в сети, например до 0,9 U, вызовет уменьшение момента до 0,9 • 0,9 Мн = 0,81 Мн и нагруженный двига тель может остановиться. Указанным обстоятельством и объясняется, частично, нормирование падения напряжения в распределительных сетях, питающих асинхронные двигатели.

В практике потребителя часто интересует механическая характеристика двигателя

Рис. 10-24. Механическая характеристика двигателя.

Эта характеристика получается простым перестроением рис, 10-23 и показана на рис. 10-24, где рабочая часть обозначена сплошной линией. Кривая 1 для двига телей нормального исполнения показывает, что асинхронный двигатель обладает жесткой характеристикой скорости, подобно двигателю постоянного тока параллельного возбуждения. Асинхронный двигатель с фазным ротором для регулирования скорости вращения, например для крановых и подъемных устройств, имеет более мягкую характеристику (кривая 2).

РАБОЧИЙ ПРОЦЕСС АСИНХРОННОГО ДВИГАТЕЛЯ

Трехфазный ток I1протекая в трехфазной обмотке статора, создает н. F1, вращающуюся со скоростью п1 = (f1 •60)/p (рис. 10-4, 10-5). Трехфазный ток ротора I2 создает в трехфазной обмотке ротора н. с. F2 вращающуюся вокруг ротора со скоростью п3 = (f1 •60)/p . Сам ротор вращается в сто-

рону н. с. со скоростью n2. Тогда скорость вращения н. с F2 относительно статора равна:

Таким образом, обе н. с. F1 и F2 вращаются с одной скоростью n1, друг относительно друга неподвижны и создают сообща вращающийся магнитный поток Ф. Следовательно, все приведенное на рис. 9-8 и 9-9 справедливо и для асинхронного двигателя.

Следует отметить, что благодаря воздушному зазору между ротором и статором ток холостого хода (рис. 9-7) двигателя очень велик (20—40)% I. Поэтому для улучшения cos φ1 сети двигатель необходимо нагружать полностью.

Статья на тему Вращающий момент электродвигателя

Источник:
http://znaesh-kak.com/e/e/%D0%B2%D1%80%D0%B0%D1%89%D0%B0%D1%8E%D1%89%D0%B8%D0%B9-%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F

Момент двигателя постоянного тока

Если обмотку возбуждения и якорь двигателя подключить к сети постоянного тока напряжением U то, возникает электромагнитный вращающий момент Мэм. Полезный вращающий момент М на валу двигателя меньше электромагнитного на значение противодействующего момента, создаваемого в машине силами трения и равного моменту Мх в режиме х.х., т. е. М = Мэм—Мх.

Пусковой момент двигателя должен быть больше статического тормозного Мт в состоянии покоя ротора, иначе якорь двигателя не начнет вращаться. В установившемся режиме (при n = соnst) имеет место равновесие вращающего М и тормозного Мт моментов:

Из механики известно, что механическая мощность двигателя может быть выражена через вращающий момент и угловую скорость

Следовательно, полезный вращающий момент двигателя М (Н • м), выраженный через полезную мощность Р (кВт) и частоту вращения n (об/мин),

Обсудим некоторые важные вопросы пуска и работы двигателей постоянного тока. Из уравнения электрического состояния двигателя следует, что

В рабочем режиме ток якоря Iя ограничивается э. д. с. E, если n приблезительно равно nном. В момент пуска п = 0, э. д. с. Е = 0 и пусковой ток Iп = U/Rяв 10—30 раз больше номинального. Поэтому прямой пуск двигателя, т. е. непосредственное включение якоря на напряжение сети, недопустимо. Чтобы ограничить большой пусковой ток якоря, перед пуском последовательно с якорем включается пусковой реостат Rп с небольшим сопротивлением. В этом случае при Е = О

После пуска и разгона наступает установившийся режим работы двигателя, при котором тормозной момент на валу Мт будет уравновешиваться моментом, развиваемым двигателем Мэм, т. е. Мэм == Мт(при n = соnst.)

Электродвигатели постоянного тока могут восстанавливать нарушенный изменением тормозного момента установившийся режим работы, т. е. могут развивать вращающий момент М, равный новому значению тормозного момента Мт при соответственно новой частоте вращения n’.

Действительно, если тормозной момент нагрузки Мт окажется больше вращающего момента двигателя Мэм, то частота вращения якоря уменьшится. При постоянных напряжении U и потоке Ф это вызовет уменьшение э. д. с. Е якоря, увеличение тока якоря и вращающего момента до наступления равновесия, при котором Мэм = Мт и n’ n’. Таким образом, двигатели постоянного тока обладают свойством саморегулирования могут развивать вращающий момент, равный тормозному.

Читайте также  Пиратская шляпа своими руками: мастер класс из картона и из газеты

Регулирование частоты

Частота вращения якоря двигателя постоянного тока определяется на основании уравнения электрического состояния U = Е + RяIяпосле подстановки в него э. д. с. Е = сФn:

(13)

Падение напряжения в якоре RяIя небольшое: при номинальной нагрузке оно не превышает 0,03 — 0,07 Uном.

Таким образом, частота вращения двигателя постоянного тока прямо пропорциональна приложенному напряжению сети и обратно пропорциональна магнитному потоку статора. Из уравнения (13) следует, что регулировать частоту вращения двигателя можно двумя способами: изменяя поток статора Ф или напряжение U подводимое к двигателю. Регулирование частоты вращения изменением магнитного поля машины осуществляется с помощью регулировочного реостата в цепи возбуждения двигателя. Изменение подводимого к двигателю напряжения производится регулированием напряжения источника.

Можно ввести дополнительный реостат в цепь якоря. В этом случае пусковой реостат заменяется пускорегулирующимRпр Такой реостат выполняет функции как пускового реостата, так и регулировочного. Уравнение (13) при этом имеет вид

(14)

Отсюда следует, что регулирование частоты вращения двигателя можно осуществить, изменяя напряжение сети, сопротивление пускорегулирующего реостата или поток статора.

Реверсирование двигателей. Из уравнения вращающего момента двигателя Мэм = kФIя вытекает, что реверсирование, т. е. изменение направления вращения якоря, может быть осуществлено изменением направления тока в обмотке возбуждения (потока Ф) или тока якоря.

Для реверсирования двигателя «на ходу» изменяют направление тока якоря (переключением якорных выводов), а обмотку возбуждения не переключают, так как она обладает большой индуктивностью и разрыв ее цепи с током недопустим. Реверсирование отключенного двигателя осуществляется и изменением направления тока в обмотке возбуждения (переключением ее выводов).[4]

Источник:
http://allrefrs.ru/4-15201.html

Регулирование скорости вращения двигателей постоянного тока

>С увеличением нагрузки на валу двигателя увеличивается так же и ток в якоре. Это вызывает увеличение падения напряжения» сопротивлении обмотки якоря и щеточных контактах.

Так как ток возбуждения остается неизменным (машина нерегулируема), то магнитный поток также постоянен. Однако при увеличении тока в якоре увеличивается размагничивающее действие потока реакции якоря и магнитный поток Ф несколько уменьшится. Увеличение Iяrя вызывает уменьшение скорости двигателя, а уменьшение Ф увеличивает скорость. Обычно падение напряжения влияет на изменение скорости в несколько большей степени, чем реакция якоря, так что с увеличением тока в якоре скорость умень­шается. Изменение скорости у двигателя этого типа незначительно и не превышает 5% при изменении нагрузки от нуля до номиналь­ной, т. е. двигатели параллельного возбуждения имеют жесткую скоростную характеристику.

При неизменном магнитном потоке зависимость момента от тока в якоре представится прямой линией. Но под воздействием

Вращающий момент двигателя реакции якоря с увеличением нагрузки происходит некоторое уменьшение магнитного потока и зависимость момента пойдет не­сколько ниже прямой линии.

Схема двигателя последовательного возбуждения показана на рис. 153. Пусковой реостат этого двигателя имеет только два за­жима, так как обмотка возбуждения и якорь образуют одну последовательную цепь. Характеристики двигателя изображены на рис. 154. Число оборотов двигателя последовательного возбуждения определяется следующим выражением:

где rс— сопротивление последовательной обмотки возбуждения. В двигателе последовательного возбуждения магнитный поток не остается постоянным, а резко изменяется с изменением нагруз­ки, что вызывает значительное изменение скорости. Так как паде­же напряжения в сопротивлении якоря и в обмотке возбуждения очень мало в сравнении с приложенным напряжением, то число оборотов можно приближенно определить следующим выражением:

Если пренебречь насыщением стали, то можно считать магнитный поток пропорциональным току в обмотке возбуждения, который равен току в якоре. Следовательно, у двигателя последовательного возбуждения скорость вращения обратно пропорциональна току в якоре и число оборотов резко уменьшается с увеличением нагруз­ки, т. е. двигатель имеет мягкую скоростную характеристику. С уменьшением нагрузки скорость вращения двигателя увеличи­вается. При холостом ходе (Iя=0) скорость двигателя беспредель­но возрастает, т. е. двигатель идет в разнос.

Таким образом, характерным свойством двигателей последова­тельного возбуждения является недопустимость сброса нагрузки, т. е. работы вхолостую или при малых нагрузках. Двигатель имеет минимальную допустимую нагрузку, составляющую 25—30% номи­нальной. При нагрузке меньше минимально допустимой скорость двигателя резко увеличивается, что может вызвать его разрушение. Поэтому, когда возможны сбросы или резкие уменьшения нагруз­ки, использование двигателей последовательного возбуждения яв­ляется недопустимым.

В двигателях очень малых мощностей сброс нагрузки не вызы­вает разноса, так как механические потери двигателя будут доста­точно большой нагрузкой для него.

Вращающий момент двигателя последовательного возбуждения, учитывая пропорциональную зависимость между магнитным пото­ком и током в якоре (Ф = С’Iя), можно определить следующим выражением:

т. е. вращающий момент пропорционален квадрату тока. Однако при больших токах сказывается насыщение стали и зависимость момента приближается к прямой линии. Таким обра­зом двигатели этого типа развивают большие вращающие момен­ты при малых оборотах, что имеет существенное значение при пуске больших инерционных масс и перегрузках. Эти двигатели широко используют в транспортных и подъемных устройствах.

При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения.

Двигатели со встречным включением обмоток не нашли широ­кого применения, так как они обладают плохими пусковыми свой­ствами и работают неустойчиво.

Скоростные характеристики двигателей смешанного возбужде­ния занимают промежуточное положение между характеристика­ми двигателей параллельного и последовательного возбуждения.

С увеличением тока в якоре число оборотов якоря уменьшается в большей мере, чем для двигателей параллельного возбуждения, за счет увеличения магнитного потока, вызываемого увеличением тока в последовательной обмотке возбуждения. При холостом ходе двигатель смешанного возбуждения не идет вразнос, так как маг­нитный поток не уменьшается до нуля из-за наличия параллельной обмотки возбуждения.

При увеличении нагрузки в двигателях смешанного возбуждения увеличивается магнитный поток и вращающий момент возрастает в большей мере, чем в двигателях параллельного возбуждения, но в меньшей мере, чем в двигателях последовательного воз­буждения.

§ 116 РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока дают возможность плавно и эконо­мично регулировать скорость вращения в широких пределах. В результате этого весьма ценного свойства двигатели постоянного тока получили широкое распространение и часто являются неза­менимыми.

Число оборотов якоря двигателя при любой схеме возбуждения определяется следующим выражением:

где rс — сопротивление последовательной обмотки возбуждения (для двигателя параллельного возбуждения rс=0). Это выраже­ние показывает, что изменение скорости вращения двигателя мож­но осуществить изменением напряжения сети, сопротивления цепи якоря и магнитного потока.

Регулирование скорости вращения изменением напряжения сети осуществляется в случае, когда источником электрической энергий двигателя является какой-либо генератор.

Для регулирования скорости вращения двигателя изменением сопротивления цепи якоря используется регулировочный реостат, включенный последовательно с якорем. В отличие от пускового ре­гулировочный реостат должен быть рассчитан на длительное про­хождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается

Регулирование скорости вращения якоря двигателя изменением магнитного потока производится изменением тока в обмотке воз­буждения. В двигателях параллельного и смешанного возбуждения включается регулировочный реостат. В двигателях последователь­ного возбуждения изменение тока в обмотке возбуждения дости­гается шунтированием этой обмотки каким-либо регулируемым со­противлением. Этот способ регулирования скорости не создает до­полнительных потерь и экономичен.

§ 117. ПОТЕРИ И К. П. Д. МАШИН ПОСТОЯННОГО ТОКА

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из следующих потерь:

Читайте также  Что делать, если вещь села после стирки: шерсть, трикотаж, джинсы, вискоза

1. Потери в стали Рст на гистерезис и вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На перемагничивание стали затрачивается мощность, называемая потерями на гистерезис. Одновременно, при вращении якоря в магнитном поле в сердеч­нике его индуктируются вихревые токи. Потери на гистерезис и вихревые токи, называемые потерями в стали, обращаются в тепло и нагревают сердечник якоря.

Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря.

Магнитная индукция зависит от э. д. с. машины или, иначе, от напряжения, а частота перемагничивания — от скорости вращения якоря. Поэтому при работе машины постоянного тока в режиме ге­нератора или двигателя потери в стали будут постоянными, не за­висящими от нагрузки, если напряжение на зажимах якоря и ско­рость его вращения постоянны.

2. Потери энергии на нагревание проводов обмоток возбужде­ния и якоря протекающими по ним токами, называемые потерями в меди,— Роб.

Источник:
http://fiziku5.ru/uchebnye-materialy-po-fizike/regulirovanie-skorosti-vrashheniya-dvigatelej-postoyannogo-toka

РЕГУЛИРОВАНИЕ МОМЕНТА И ТОКА ДВИГАТЕЛЕЙ

При формировании заданного графика движения исполнительных органов, например кабины пассажирского лифта, возникает необходимость обеспечения требуемого его ускорения и замедления. В соответствии с выражениями (2.3) и (2.4) это реализуется за счет регулирования прикладываемого к исполнительным органам со стороны ЭП момента или усилия.

В некоторых технологических процессах (прокатка металла, изготовление проводов и кабелей, бумажное и текстильное производства) требуется, чтобы на исполнительных органах рабочих машин создавалось необходимое натяжение в обрабатываемом материале или изделии. Это также обеспечивается с помощью ЭП за счет регулирования создаваемого им момента или усилия.

Ограничение момента ЭП требуется также для предотвращения поломки рабочей машины или механической передачи при внезапном стопорении (прекращении движения) исполнительных органов (например, при копании грунта экскаватором, бурении скважин, заклинивании механической передачи и т.д.).

Регулирование (ограничение) тока и момента двигателей требуется также и для обеспечения нормальных условий работы самих двигателей. Так, в динамических режимах ток якоря двигателей постоянного тока обычного исполнения по соображениям нормальной работы их коллекторно-щеточного узла должен быть ограничен на уровне 2—3 раз от его номинального значения. Необходимость ограничения тока возникает и в случае пуска мощных двигателей постоянного и переменного тока, когда большие пусковые токи двигателей могут привести к недопустимому снижению напряжения питающей сети.

Каким же образом можно изменять момент двигателя? Для ответа на этот вопрос обратимся к формуле, определяющей развиваемый электрическими двигателями постоянного тока момент Л/, определяемый произведением магнитного потока Ф и тока якоря /:

где к — конструктивный коэффициент двигателя.

В соответствии с этой формулой регулирование (ограничение) момента может быть достигнуто за счет изменения магнитного потока Ф или тока /. Основными показателями для оценки того или иного способа регулирования (ограничения) момента являются точность поддержания заданного усилия или момента.

Регулирование тока двигателя производится его системой управления (или оператором) за счет изменения подводимого к двигателю напряжения с помощью преобразователей электроэнергии или включением в его цепи добавочных резисторов. Отметим при этом, что регулирование тока и тем самым момента может осуществляться только в динамическом (переходном) режиме ЭП, поскольку в установившемся режиме ток и момент двигателей определяются их механической нагрузкой.

Для анализа возможности регулирования тока используется электромеханическая характеристика двигателя, которая представляет собой зависимость его скорости от тока со(/). Для двигателей постоянного тока независимого возбуждения его электромеханическая характеристика является зависимостью скорости от тока якоря и при постоянном (нерегулируемом) магнитном потоке повторяет механическую. Для асинхронного двигателя электромеханическая характеристика представляет собой зависимость его скорости от тока статора или ротора, а для синхронного двигателя — зависимость его скорости от тока статора.

На рис. 3.2, а для примера показаны электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения, позволяющие регулировать (ограничивать) ток / и момент М при пуске с помощью добавочного резистора R;i в цепи якоря. Резистор включается в цепь двигателя на период пуска (характеристика /), а затем при достижении двигателем скорости со-, закорачивается (шунтируется) с помощью коммутационных аппаратов и двигатель переходит на основную характеристику 2. Как видно из рис. 3.2, а, регулирование тока и момента производится ступенчато соответственно в пределах 1<—12 и М<—М2 и характеризуется невысокой точностью.

Для повышения точности необходимо использовать несколько ступеней резисторов и соответственно несколько пусковых характеристик, в этом случае ток / и момент М будут изменяться в меньших пределах. Данный способ характеризуется простотой реализации, но отличается малой точностью.

Наибольшая точность может быть получена в замкнутой системе «преобразователь — двигатель» за счет регулирования подводимого к двигателю напряжения. В таком ЭП может быть получена изображенная на рис. 3.2, 6 характеристика, наличие участка 3 которой обеспечивает ограничение тока и момента двигателя. В пределе участок 3 характеристики может быть получен в виде вертикальной линии, что определит максимально возможную точность регулирования тока и момента.

Рис. 3.2. Характеристики двигателя при ограничении тока и момента:

а — с помощью резисторов; б — в системе «преобразователь — двигатель»: 7 — с резистором в цепи якоря; 2 — без резистора в цепи якоря; 3,4 — соответственно вертикальный и горизонтальный участки характеристики в замкнутой системе

Источник:
http://studref.com/359234/tehnika/regulirovanie_momenta_toka_dvigateley

Регулирование частоты вращения двигателей с параллельным возбуждением

Частоту вращения двигателей постоянного тока можно изменять тремя способами: изменением сопротивления rя цепи якоря , изменением магнитного потока Ф , изменением подводимого к двигателю напряжения U.

Первый способ применяют редко, так как он неэкономичен, дает возможность вести регулирование частоты вращения только под нагрузкой и вынуждает использовать механические характеристики, имеющие различный наклон. При регулировании по этому способу вращающий предельно допустимый момент остается постоянным. Магнитный поток не меняется, и если приближенно считать, что сила тока, определяемая длительно допустимым нагревом двигателя, одинакова на всех частотах вращения, то предельно допустимый момент также должен быть одинаков на всех скоростях.

Регулирование скорости двигателей постоянного тока с параллельным возбуждением изменением магнитного потока получило значительное распространение. Величину потока можно изменять реостатом. При увеличении сопротивления этого реостата уменьшается сила тока возбуждения и магнитный поток и увеличивается частота вращения. Каждому уменьшенному значению магнитного потока Ф соответствуют увеличенные значения n0 и b.

Таким образом, при ослаблении магнитного потока механические характеристики представляют собой прямые линии, расположенные выше естественной характеристики, непараллельные ей и имеющие тем больший наклон, чем меньшим потокам они соответствуют. Число их зависит от числа контактов на реостате и может быть достаточно большим. Таким образом, регулирование частоты вращения ослаблением потока может быть сделано практически бесступенчатым.

Если по-прежнему приближенно считать предельно допустимую силу тока на всех скоростях одинаковой, то P = const

Таким образом, при регулировании частоты вращения изменением магнитного потока предельно допустимая мощность двигателя остается постоянной при всех скоростях. Предельно допустимый момент изменяется обратно пропорционально частоте вращения. При повышении частоты вращения двигателя ослаблением поля увеличивается искрение под щетками вследствие роста реактивной э. д. с, наводимой в коммутируемых секциях двигателя.

При работе двигателя с ослабленным потоком уменьшается устойчивость работы, особенно когда нагрузка на валу двигателя является переменной. При малом значении потока заметно размагничивающее действие реакции якоря. Так как размагничивающее действие определяется величиной силы тока якоря электродвигателя, то при изменениях нагрузки частота вращения двигателя резко меняется. Для повышения устойчивости работы регулируемые двигатели с параллельным возбуждением обычно снабжают слабой последовательной обмоткой возбуждения, поток которой частично компенсирует размагничивающее действие реакции якоря.

Читайте также  Стираем шторы с люверсами

Двигатели, предназначенные для работы с повышенными частотами вращения, должны обладать повышенной механической прочностью. При высоких скоростях усиливаются вибрации двигателя и шум при работе. Эти причины ограничивают наибольшую частоту вращения электродвигателя. Низшая частота вращения также имеет определенный практический предел.

Номинальный момент определяет размеры и стоимость двигателей постоянного тока (так же как и асинхронных двигателей). При понижении наименьшей, в данном случае номинальной, частоты вращения двигателя определенной мощности номинальный момент его возрастет. Размеры двигателя при этом увеличатся.

На промышленных предприятиях наиболее часто применяют двигатели с диапазонами регулирования

Для расширения диапазона регулирования частоты вращения изменением магнитного потока иногда употребляют особую схему возбуждения двигателя, позволяющую улучшить коммутацию и снизить влияние реакции якоря на высоких частотах вращения двигателя. Питание катушек двух пар полюсов разделяют, образуя две независимые цепи: цепь катушек одной пары полюсов и цепь другой пары.

Одну из цепей включают на постоянное напряжение, в другой изменяют величину и направление тока. При таком включении общий магнитный поток, взаимодействующий с якорем, можно изменять от суммы наибольших значений потоков катушек двух цепей до их разности.

Катушки включены так, что через одну пару полюсов всегда проходит полный магнитный поток. Поэтому реакция якоря сказывается в меньшей степени, чем при ослаблении магнитного потока всех полюсов. Так можно регулировать все многополюсные двигатели постоянного тока с волновой обмоткой якоря. При этом достигается устойчивая работа двигателя в значительном диапазоне скоростей.

Регулирование частоты вращения двигателей постоянного тока посредством изменения подводимого напряжения требует применения специальных схем.

Двигатели постоянного тока по сравнению с асинхронными значительно тяжелее и в несколько раз дороже. К. п. д. этих двигателей ниже, а эксплуатация их более сложна.

Промышленные предприятия получают энергию трехфазного тока, и для получения постоянного тока требуются специальные преобразователи. Это связано с добавочными потерями энергии. Основной причиной применения для привода металлорежущих станков двигателей постоянного тока с параллельным возбуждением является возможность практически бесступенчатого и экономичного регулирования их частоты вращения.

В станкостроении применяют комплектные приводы с выпрямителями и двигателем постоянного тока с параллельным возбуждением (рис. 1). Посредством реостата PC изменяют силу тока возбуждения электродвигателя, обеспечивая практически бесступенчатое регулирование его частоты вращения в диапазоне 2:1. В комплект привода входит пусковой реостат РП, а также аппаратура защиты, на рис. 1 не показанная.

Рис. 1. Схема электропривода постоянного тока с выпрямителем

В ыпрямители (B1 — В6), погруженные в трансформаторное масло, и всю аппаратуру помещают в шкафу управления, а реостат PC устанавливают в месте, удобном для обслуживания.

Источник:
http://electricalschool.info/elprivod/963-regulirovanie-chastoty-vrashhenija.html

РЕГУЛИРОВАНИЕ МОМЕНТА И ТОКА ДВИГАТЕЛЕЙ

При формировании заданного графика движения исполнительных органов, например кабины пассажирского лифта, возникает необходимость обеспечения требуемого его ускорения и замедления. В соответствии с выражениями (2.3) и (2.4) это реализуется за счет регулирования прикладываемого к исполнительным органам со стороны ЭП момента или усилия.

В некоторых технологических процессах (прокатка металла, изготовление проводов и кабелей, бумажное и текстильное производства) требуется, чтобы на исполнительных органах рабочих машин создавалось необходимое натяжение в обрабатываемом материале или изделии. Это также обеспечивается с помощью ЭП за счет регулирования создаваемого им момента или усилия.

Ограничение момента ЭП требуется также для предотвращения поломки рабочей машины или механической передачи при внезапном стопорении (прекращении движения) исполнительных органов (например, при копании грунта экскаватором, бурении скважин, заклинивании механической передачи и т.д.).

Регулирование (ограничение) тока и момента двигателей требуется также и для обеспечения нормальных условий работы самих двигателей. Так, в динамических режимах ток якоря двигателей постоянного тока обычного исполнения по соображениям нормальной работы их коллекторно-щеточного узла должен быть ограничен на уровне 2—3 раз от его номинального значения. Необходимость ограничения тока возникает и в случае пуска мощных двигателей постоянного и переменного тока, когда большие пусковые токи двигателей могут привести к недопустимому снижению напряжения питающей сети.

Каким же образом можно изменять момент двигателя? Для ответа на этот вопрос обратимся к формуле, определяющей развиваемый электрическими двигателями постоянного тока момент Л/, определяемый произведением магнитного потока Ф и тока якоря /:

где к — конструктивный коэффициент двигателя.

В соответствии с этой формулой регулирование (ограничение) момента может быть достигнуто за счет изменения магнитного потока Ф или тока /. Основными показателями для оценки того или иного способа регулирования (ограничения) момента являются точность поддержания заданного усилия или момента.

Регулирование тока двигателя производится его системой управления (или оператором) за счет изменения подводимого к двигателю напряжения с помощью преобразователей электроэнергии или включением в его цепи добавочных резисторов. Отметим при этом, что регулирование тока и тем самым момента может осуществляться только в динамическом (переходном) режиме ЭП, поскольку в установившемся режиме ток и момент двигателей определяются их механической нагрузкой.

Для анализа возможности регулирования тока используется электромеханическая характеристика двигателя, которая представляет собой зависимость его скорости от тока со(/). Для двигателей постоянного тока независимого возбуждения его электромеханическая характеристика является зависимостью скорости от тока якоря и при постоянном (нерегулируемом) магнитном потоке повторяет механическую. Для асинхронного двигателя электромеханическая характеристика представляет собой зависимость его скорости от тока статора или ротора, а для синхронного двигателя — зависимость его скорости от тока статора.

На рис. 3.2, а для примера показаны электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения, позволяющие регулировать (ограничивать) ток / и момент М при пуске с помощью добавочного резистора R;i в цепи якоря. Резистор включается в цепь двигателя на период пуска (характеристика /), а затем при достижении двигателем скорости со-, закорачивается (шунтируется) с помощью коммутационных аппаратов и двигатель переходит на основную характеристику 2. Как видно из рис. 3.2, а, регулирование тока и момента производится ступенчато соответственно в пределах 1<—12 и М<—М2 и характеризуется невысокой точностью.

Для повышения точности необходимо использовать несколько ступеней резисторов и соответственно несколько пусковых характеристик, в этом случае ток / и момент М будут изменяться в меньших пределах. Данный способ характеризуется простотой реализации, но отличается малой точностью.

Наибольшая точность может быть получена в замкнутой системе «преобразователь — двигатель» за счет регулирования подводимого к двигателю напряжения. В таком ЭП может быть получена изображенная на рис. 3.2, 6 характеристика, наличие участка 3 которой обеспечивает ограничение тока и момента двигателя. В пределе участок 3 характеристики может быть получен в виде вертикальной линии, что определит максимально возможную точность регулирования тока и момента.

Рис. 3.2. Характеристики двигателя при ограничении тока и момента:

а — с помощью резисторов; б — в системе «преобразователь — двигатель»: 7 — с резистором в цепи якоря; 2 — без резистора в цепи якоря; 3,4 — соответственно вертикальный и горизонтальный участки характеристики в замкнутой системе

Источник:
http://studref.com/359234/tehnika/regulirovanie_momenta_toka_dvigateley