Силовая характеристика электростатического поля – это

Силовая характеристика электростатического поля – это..

1) диэлектрическая проницаемость среды 2) потенциал 3) напряженность

Потенциал электростатического поля — это.

1) энергетическая характеристика поля 2) силовая характеристика поля

3) физическая величина, характеризующая способность тел к электрическим взаимодействиям

Электроемкость — это.

1) энергетическая характеристика поля 2) способность проводников накапливать электрический заряд

3) физическая величина, характеризующая способность тел к электрическим взаимодействиям

50. Устройство, способное накапливать электрический заряд и мгновенно его отдавать при разрядке через электрическую цепь, называется….

1) колебательный контур 2) конденсатор 3) маятник

51. Электрический ток это…..

1) упорядоченное движение заряженных частиц 2) хаотическое движение заряженных частиц

3) состояние покоя частиц

Какова роль источника тока в электрической цепи?

1) порождает заряженные частицы 2) создает и поддерживает разность потенциалов в электрической цепи

3) разделяет положительные и отрицательные за­ряды

53. Силу тока в электрической цепи измеряют:

1) вольтметром 2) амперметром 3) омметром

Как изменится сила тока в цепи, если увеличить сопротивление проводника?

1) увеличится 2) уменьшится 3) не изменится

55. При последовательном соединении элементов электрической цепи неизменным является….

1) сила тока 2) напряжение 3) сопротивление

56. При параллельном соединении элементов электрической цепи неизменным является….

1) сила тока 2) напряжение 3) сопротивление

57.Вещества, которые не проводят электрический ток, называются…..

1) диэлектрики 2) ферромагнетики 3) проводники

Какая среда является хорошим проводником?

1) плазма 2) стеклянная палочка 3) резина

59. Вещества, которые при определенных условиях могут быть проводниками или диэлектриками называются……

1) ферромагнетиками 2) полупроводниками 3) диамагнетиками

60. Назовите вещество, являющееся полупроводником….

1) кремний 2) железо 3) вода

61. Проводимость полупроводников при наличие примеси называется…..

1) собственной 2) примесной 3) нет правильного ответа

Движущиеся заряженные частицы и постоянный магнит создают

1) электрическое поле 2) гравитационное поле 3) магнитное поле

63. Вектор магнитной индукции это силовая характеристика……

1) гравитационного поля 2) магнитного поля 3) электрического поля

64.При внесении железного сердечника в катушку с током магнитное поле

1) не изменяется 2) ослабевает 3) исчезает 4) усиливается

65. Сила Ампера это сила, действующая на …..

1) движущийся электрический заряд 2) проводник с током в магнитном поле 3) покоящийся заряд

66. Сила Лоренца это сила, действующая на …..

1) движущийся электрический заряд 2) проводник с током в магнитном поле 3) покоящийся заряд

67. Возникновение электрического тока в проводящем контуре при изменении магнитного потока, проходящего через контур называется…..

1) электромагнитной индукцией 2) индуктивностью 3) самоиндукцией

68. Возникновение ЭДС индукции в том же проводнике, в котором изменяется первичный ток, называется…..

1) электромагнитной индукцией 2) индуктивностью 3) самоиндукцией

69. Вихревое электрическое поле, возникающее в катушке при замыкании цепи…..

1) препятствует нарастанию тока в цепи 2) не влияет на основной ток

3) способствует нарастанию тока в цепи

70. Фарадей для объяснения своих экспериментов о появлении электрического тока в катушке, к которой подносится магнит, высказал гипотезу, что……

1) переменное магнитное поле образует вихревое электрическое поле

2) существует минимальный элементарный электрический заряд

3) в катушке возникают электрические заряды

71. Электромагнитное поле образуется в результате …

1) изменения со временем электрического поля 2) изменения со временем магнитного поля

3) изменяющихся со временем и порождающих друг друга магнитного и электрического полей

72. Электромагнитные колебания возникают в …..

1) математическом маятнике 2) колебательном контуре 3) конденсаторе

73. Колебательным контуром называется электрическая цепь, состоящая из….

1) конденсатора, катушки, соединительных проводов 2) катушки и резистора 3) конденсатора и резистора

Какой ток называется переменным?

1) ток, у которого периодически изменяется только численное значение

2) ток, у которого периодически изменяются величина и направление

3) ток, у которого изменяется только направление

В индукционных генераторах происходит превращение.

1) . электрической энергии во внутреннюю 2) . электрической энергии в механическую

3) . механической энергии в электрическую

76. Трансформатор служит для…..

1) получения постоянного тока 2) получения переменного тока 3) преобразования переменного тока

77. Для уменьшения потерь мощности в линиях электропередачи…

1) уменьшают силу тока, увеличивая напряжение 2) увеличивают силу тока, уменьшая напряжение

3) увеличивают сечение проводов, уменьшая сопротивление

78. Электромагнитное поле, распространяющееся в пространстве это….

1) электромагнитные колебания 2) механические волны 3) электромагнитные волны

79. Для распространения электромагнитных волн…..

1) нужна среда 2) не нужна среда 3) нет правильного ответа

80. Скорость электромагнитных волн в вакууме равна……

1) скорости звука 2) скорости света 3) нет правильного ответа

81. В однородной среде свет …..

1) отражается 2) распространяется прямолинейно 3) преломляется

82. На границе раздела двух сред свет…..

1) только отражается 2) только преломляется

3) частично отражается и частично преломляется, проходя в другую среду, если она прозрачна

Какое из перечисленных ниже выражений определяет понятие дисперсия?

1) наложение когерентных волн 2) разложение света в спектр при преломлении

3) огибание волной препятствия

Природное явление – радуга – объясняется явлением

1) интерференции 2) дисперсии 3) дифракции

85. Сложение световых волн, в результате которого образуется картина чередования темных и цветных полос называется….

Источник:
http://studopedia.ru/26_95660_silovaya-harakteristika-elektrostaticheskogo-polya—eto.html

Электрическое поле

Исследование взаимодействия заряженных легких алюминиевых гильз и электрических султанов.

Каким образом осуществляется взаимодействие зарядов?

Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.

Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.

Электрическое поле неподвижных зарядов не меняется со временем и называется электростатическим полем .

Свойства электрического поля:

  1. Порождается электрическим зарядом.
  2. Обнаруживается по действию на заряд.
  3. Действует на заряд с некоторой силой.
  4. Распространяется в пространстве с конечной скоростью с=3·10 8 м/с.

Силовой характеристикой электрического поля является напряженность.

Напряженность электрического поля – векторная физическая величина, равная отношению силы , действующей на пробный точечный заряд q, к этому заряду:

Направление вектора напряженности совпадает с направлением вектора кулоновской силы.

Напряженность поля не зависит от значения пробного заряда q; определяется зарядами – источниками поля, является силовой характеристикой этого поля.

Единица в СИ – Н/Кл или В/м.

Поле, напряженность которого в любой точке одинакова (E = const), называют однородным.

Напряженность точечного электрического заряда в данной точке зависит от модуля заряда Q и от расстояния до этого заряда R.

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. В этом заключается принцип суперпозиции электрических полей .

Электрические поля изображаются графически с помощью линий напряженности .

Неоднородное электрическое поле

Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.

Однородное электрическое поле

На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.

Работа электрического поля не зависит от формы траектории и на замкнутой траектории равна нулю. Такие поля называются потенциальными. Для этих поле характерна незамкнутость линий напряженности.

Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.

Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q:

Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей

Читайте также  Как украсить спальню - 100 фото необычных дизайнерских идей

На практике используют разность потенциалов :

В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.

Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.

На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.

Связь между напряженностью электрического поля и напряжением:

Источник:
http://fizclass.ru/elektricheskoe-pole/

Электрическое поле: основные понятия

Содержание:

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

Напряжение электрического поля является векторной величиной. Направление вектора E → совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

Электрическое поле подчиняется принципу суперпозиции.

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E = 1 4 πε 0 · Q r 2 .

Это поле называется кулоновским.

В кулоновском поле направление вектора E ⇀ зависит от знака заряда Q : если Q > 0 , то вектор E ⇀ направлен по радиусу от заряда, если Q 0 , то вектор E ⇀ направлен к заряду.

Обратимся к иллюстрации. На рисунке для большей наглядности мы используем силовые линии электрического поля. Они проходят таким образом, чтобы направление вектора E ⇀ в каждой из точек пространства совпадало с направлением касательной к силовой линии. Густота силовых линий соответствует модулю вектора напряженности поля.

Рисунок 1 . 2 . 1 . Силовые линии электрического поля.

Мы можем использовать как положительные, так и отрицательные точечные заряды. Оба эти случая мы изобразили на рисунке. Электростатическое поле, которое создается системой зарядов, мы можем представить как суперпозицию кулоновских полей точечных зарядов. В связи с этим мы можем рассматривать поля точечных зарядов как элементарные структурные единицы любого электрического поля.

Рисунок 1 . 2 . 2 . Силовые линии кулоновских полей.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r → от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E → параллелен r → , а при Q 0 вектор E → антипараллелен r → .

Следовательно можно записать:

E → = 1 4 π ε 0 · Q r 3 r → ,

где r – модуль радиус-вектора r → .

По заданному распределению зарядов можно определить электрическое поле E → . Такие задачи часто встречаются в таком разделе физики как электростатика. Рассмотрим пример такой задачи.

Предположим, что нам нужно найти электрическое поле длинной однородно заряженной нити на расстоянии R от нее. Для большей наглядности мы привели схему на рисунке ниже.

Рисунок 1 . 2 . 3 . Электрическое поле заряженной нити.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δ x нити, с зарядом τ Δ x , где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей ∆ E → . Результирующее поле оказывается равным

Вектор E → везде направлен по радиусу R → . Это следует из симметрии задачи.

Даже в таком простом примере вычисления могут быть достаточно громоздкими. Упростить математические расчеты позволяет теорема Гаусса, которая выражает фундаментальное свойство электрического поля.

Рисунок 1 . 2 . 4 . Модель электрического поля точечных зарядов.

Рисунок 1 . 2 . 5 . Модель движения заряда в электрическом поле.

Понятие о диполях

Электрический диполь – это система из двух одинаковых по модулю зарядов, которые отличаются знаками и расположены на некотором расстоянии друг от друга.

Эта система может послужить нам хорошим примером применения принципа суперпозиции полей, а также электрической моделью многих молекул.

Рисунок 1 . 2 . 6 . Силовые линии поля электрического диполя E → = E 1 → + E 2 → .

Дипольный момент p → является одной из наиболее важных характеристик электрического диполя:

где l → – вектор, направленный от отрицательного заряда к положительному, модуль l → = l .

Электрическим дипольным моментом обладает, например, нейтральная молекула воды ( H 2 O ) , так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105 ° . Дипольный момент молекулы воды p = 6 , 2 · 10 – 30 К л · м .

Рисунок 1 . 2 . 7 . Дипольный момент молекулы воды.

Источник:
http://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/elektricheskoe-pole-osnovnye-ponjatija/

Характеристики тока.

Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.

Электрический ток являет собой эффект направленного движения электрических зарядов (в газах — ионы и электроны, в металлах — электроны), под воздействием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

Обычно за направление электрического берут направление положительного заряда.

Далее мы рассмотрим такие характеристики тока, как:

  • мощность тока;
  • напряжение тока;
  • сила тока;
  • сопротивление тока.

Мощность тока.

Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.

Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощ­ность (элек­три­че­ская и ме­ха­ни­че­ская) из­ме­ря­ет­ся в Ват­тах (Вт).

Мощ­ность тока не за­ви­сит от вре­ме­ни про­те­ка­ния элек­три­че­ско­го тока в цепи, а опре­де­ля­ет­ся как про­из­ве­де­ние на­пря­же­ния на силу тока.

Напряжение тока.

Напряжением электрического тока называется величина, которая показывает, какую работу совершило электрическое поле при перемещении заряда от одной точки до другой. Напряжение при этом в различных участках цепи будет отличаться.

К примеру: напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет намного больше, и величина напряжения будет зависеть от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: U=A/q, где

  • U — напряжение,
  • A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Силой тока называют количество заряженных частиц которые протекают через поперечное сечение проводника.

По определению сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Сила электрического тока измеряется прибором, который называется Амперметром. Величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. К примеру: говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в повседневной жизни не используются. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Читайте также  Пирамида своими руками: ошибки в размерах и материалах

Сопротивление тока.

Электрическим сопротивлением называется физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивление тока (часто обозначается буквой R или r) считается сопротивление тока, в определённых пределах, постоянной величиной для данного проводника. Под электрическим сопротивлением понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.

Условия возникновения электрического тока в проводящей среде:

1) присутствие свободных заряженных частиц;

2) если есть электрическое поле (присутствует разность потенциала между двумя точками проводника).

Виды воздействия электрического тока на проводящий материал.

1) химическое — изменение химического состава проводников (происходит в основном в электролитах);

2) тепловое — нагревается материал, по которому течет ток (в сверхпроводниках этот эффект отсутствует);

3) магнитное — появление магнитного поля (происходит у всех проводников).

Главные характеристики тока.

1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.

Сила тока определяется амперметром.

2. Напряжение U — равняется разности потенциалов на участке цепи.

Напряжение определяется вольтметром.

3. Сопротивление R проводящего материала.

а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);

б) от температуры t°С (или Т): R = R0 (1 + αt),

  • где R0 – сопротивление проводника при 0°С,
  • α – температурный коэффициент сопротивления;

в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.

Источник:
http://www.calc.ru/Kharakteristiki-Toka.html

Какая физическая величина является силовой характеристикой электрического

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j — это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

U = j1 — j2 — разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 — j2 = А/q — — напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м 2 . Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F 0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

Электрическое поле – это особая форма материи которая создаётся электрическими зарядами (заряженными телами) и которую можно обнаружить по взаимодействию электрических зарядов (заряженных тел).

Свойства электрического поля:

1. Оно материально, т.е. существует независимо от нас и наших знаний о нём.

2. Оно создаётся электрическими зарядами (заряженными телами)

3. Оно обнаруживается по взаимодействию электрических зарядов (заряженных тел)

4. Оно действует на электрические заряды (заряженные тела) с некоторой силой.

5. Электрическое поле непосредственно невидимо, но может наблюдаться по его действию и с помощью приборов.

6. Электрическое поле является одной из составляющих единого электромагнитного поля и проявлением электромагнитного взаимодействия.

7. Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда

Напряженность электрического поля – векторная физическая величина.

Читайте также  Как определить полярность аккумулятора автомобиля: методы распознания европейской и российской маркировки

Направление вектора совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

8. Энергетической характеристикой поля является потенциал.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля.

В Международной системе единиц (СИ) единицей потенциала является вольт (В): 1 В = 1 Дж / 1 Кл.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8459 — | 7349 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Силовая характеристика

Силовую характеристику электрического поля определяет его напряженность. [31]

Силовой характеристикой поля является его напряженность, в данном случае сила, отнесенная к единице массы тела и равная ускорению g его свободного падения. [32]

Силовой характеристикой магнитного поля является вектор магнитной индукции В. Его удобно определять по ориентирующему действию магнитного поля на маленький контур с током 7 и площадью S, внесенный в данную точку поля. Характеристикой контура является величина рт IS — магнитный момент контура с током. Для плоского контура с током вектор рт расположен перпендикулярно плоскости контура и связан с направлением тока / правилом правого винта. [33]

Силовой характеристикой гравитационного поля является его напряженность, измеряемая силой, действующей на материальную точку единичной массы. [34]

Силовой характеристикой магнитного поля является индукция В. Эта векторная физическая величина обычно вводится путем рассмотрения действия магнитного поля на маленькую пробную рамку с током. Направление вектора В совпадает с направлением нормали к свободной пробной рамке с током, установившейся в поле. [35]

Силовой характеристикой электрического поля является его напряженность. С помощью величины напряженности представляется возможным оценивать интенсивность электрического поля и определять силу, действующую со стороны поля на заряженную частицу. [36]

Силовой характеристикой регулирующего органа называется зависимость изменения необходимого перестановочного усилия от перемещения затвора. [37]

Силовой характеристикой магнитного поля является индукция В. Как и электрическое поле, магнитное удовлетворяет принципу суперпозиции. [38]

Если силовая характеристика выражается многочленом более высокой степени, чем вторая, то спектр деформации будет еще богаче высшими составляющими и комбинационными тонами. [39]

Если силовые характеристики основного упругого элемента и ограничителей хода линейны, то общая характеристика принимает вид ломаной ( фиг. Следовательно, система в целом оказывается нелинейной; к ней приложимы выводы и методы расчета, приведенные в общем виде в гл. [40]

Расчеты силовых характеристик ввиду сложности формул обычно выполняют с помощью ЭВМ. [42]

Жесткость силовой характеристики пят зависит от жесткости гидравлических характеристик H ( Q) дросселирующих кольцевых щелей и лабиринтного насоса. [44]

Несовпадение силовых характеристик работы машины и двигателя лишает возможности без соответствующих исследований указать, в каком состоянии будет находиться машина, в состоянии ли стационарного или же неустановившегося движения. [45]

Источник:
http://trubymaster.ru/kakaja-fizicheskaja-velichina-javljaetsja-silovoj/

Дать понятие силовой и энергетической характеристики электрического поля

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Характеристики электрического поля:

· Силовая характеристика — напряженность (Е, вектор);

· Энергетическая характеристика — потенциал (Фи, скаляр).

Силовую характеристику электрического поля определяет его напряженность.

Основная силовая характеристика электрического поля – это напряжённость электрического поля (Е), определяемая силой (F), действующей на точечный (единичный) электрический заряд (Q), помещенный в данную точку поля.

В общем случае напряженность поля Е = F/Q. Т. е. напряженность в данной точке пространства есть отношение силы, действующей на заряд, помещенный в эту точку к величине этого заряда.

С помощью величины напряженности представляется возможным оценивать интенсивность электрического поля и определять силу, действующую со стороны поля на заряженную частицу.

Энергетическая характеристика электрического поля – потенциал электрического поля.

Он представляет собой работу которую нужно совершить против сил электрического поля для того чтобы переместить единичный положительный точечный заряд находящийся на бесконечности в данную точку поля.

Измеряется потенциал электрического поля в вольтах.

Потенциал электрического поля представляет собой отношение потенциальной энергии к заряду. Как известно электрическое поле является потенциальным. Следовательно, любое тело, находящееся в этом поле обладает потенциальной энергией. Любая работа, которая будет совершаться полем, будет происходить за счет уменьшения потенциальной энергии.

3. Сформулировать закон Кулона. Охарактеризовать основные характеристики электрического поля: напряженность, электрический потенциал, электрическое напряжение.

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах).

Основные характеристики электрического поля:

· Напряжённость — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы F, действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда q:

.

Напряженность электрического поля — это отношение силы, действующей на заряд, к величине заряда.

· Электрический потенциал — временная компонента четырёхмерного электромагнитного потенциала, называемый также иногда скалярным потенциалом (скалярным — в трёхмерном смысле; скаляром в релятивистском смысле — инвариантом группы Лоренца — он не является, то есть не является неизменным при смене системы отсчёта).

Через электрический потенциал φ выражается напряжённость электрического поля:

где

где — оператор градиента (набла),

— векторный потенциал, через который выражается (также) магнитное поле.

· Электрическое напряжение — физическая величина, которая равна работе электрического поля по перемещению единичного заряда из одной точки в другую.

Напряжение (U) равно отношению работы электрического поля по перемещению заряда

к величине перемещаемого заряда на участке цепи: U=

Единица измерения напряжения в системе СИ: [U] = 1 B

Закон Кулона — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона: Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка: Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Источник:
http://studopedia.org/11-32676.html