Как сделать сопротивление своими руками

Здравствуйте уважаемый читатель блога Моя лаборатория радиолюбителя.

В сегодняшнем материале хотелось бы освятить довольно таки нужную тему о резисторах, в особенности вопрос о том, что такое резистор, возникает у новичков радиолюбителей. В этой обширной статейке я довольно таки подробно постараюсь объяснить, что такое резистор, как он выглядит и где применяется.

И так начнем повествование о резисторах, поэтому усаживаемся поудобнее за нашими мониторами, желательно сделать себе кофе и погрузиться в мир радиоэлектроники 🙂

Что такое резистор? Резистор – это пассивный элемент электрической схемы, создающий сопротивление электрическому току.
Где применяются резисторы? Применяются резисторы во всех схемах, и чаще, в количественном отношении, чем другие элементы схемы. С помощью резисторов регулируют значения тока и напряжения.
Единица измерения сопротивления – Ом. Измерения записываются в сторону увеличения: Ом, кОм(1000Ом)-килоом, мОм(1.000.000Ом)-мегаом и Гом(1.000.000.000Ом)-гигаом.

Типы резисторов:

Постоянные резисторы – это резисторы имеющие постоянное, неизменное, сопротивление независимое от воздействия окружающих воздействий, таких как свет, температура.
— так обозначаются на схемах постоянные резисторы и подписываются буквой R

Переменные резисторы — это резисторы меняющее свое сопротивление в зависимости от положения движка переменного резистора.

— так обозначаются переменные резисторы в схемах

Такие переменные резисторы используются в многой бытовой технике вокруг нас, старые телевизоры, где звук регулировали крутя ручку звука и подобные

Подстроечные резисторы — это те же самые переменные резисторы, но используемые для точных настроек токов и напряжений схем. Устанавливаются преимущественно на самих печатных платах.
— обозначение подстроечных резисторов на схемах

Фоторезисторы – это резисторы меняющие свое сопротивление под действием света.
— обозначение фоторезистора на схеме

Терморезисторы – резисторы меняющие свое сопротивление в зависимости от температуры, приложенной к нему
— схематическое обозначение терморезистор

Маркировка резисторов:

Маркировка по ГОСТу номинальный ряд
Все резисторы, выпускаемые нашей промышленностью, имеют свою особую сокращенную маркировку, дабы было удобно читать номинал на маленьких резисторах. Для сокращения используют буквы указывающие единицу измерения
E и R – единица Ома
К – единица кОм
M- мОм
А вот сотни единиц, обозначаются буквами, стоящими перед цифрами.
Например: 0,33Ом -E33, 33Ом-33E, 33кОм-33K, 330кОм-M33, 33мОм-33M.

Заграничный ГОСТ
Тут немного проще. По американским стандартам маркируются резисторы 3 буквами, две первые указывающие номинал, а третья — количество нулей добавляемых к номиналу
Например: 0,33Ом –R33, 33Ом-330, 33кОм-333, 330кОм-334, 33мОм-336.

Цветовая маркировка резисторов
На мой взгляд самая удобная и простая в использовании. Обозначается она разноцветными полосками на резисторе. Полосок бывает 4 и 5. Научится читать резисторы цветной маркировки очень просто:

-Первые две полосы указывают номинал резистора.

-Третья полоска, у резисторов с 4 полосами, указывает множитель, а у резисторов с 5 полосами, указывает третью цифру номинала.

-Четвертая полоса в 4 полосной маркировке говорит о точности номинала, а в 5 полосной указывает на множитель номинала.

-Пятая полоса указывает на точность

Что бы удобно было ориентироваться, вот табличка с цветовой кодировкой резисторов

К примеру, резистор номиналом 1 кОм с погрешностью 1% будет иметь код — коричневый черный красный коричневый

Мощность резисторов и рассеиваемая мощность

Каждый резистор, пропуская через себя напряжение, создает определенное падение напряжение, что обусловлено законом Ома (R=UI). Из-за этого на резисторе начинает рассеиваться тепло — это и есть рассеиваемая мощность. Эту мощность мы рассчитываем для сбережения целостности резистора, потому-то резистор имеют свою определенную рассеиваемую мощность, то есть сколько тепла он сможет выделить при падении на нем напряжения. Рассчитывается мощность по формуле P= I*U либо эти две для вычисления промежуточного параметра P=I^2*R или P=U^2/R

Для примера нам нужно рассчитать балластный резистор для блока питания 5В с током нагрузки 0,1А. Сначала по закону Ома рассчитаем, какое сопротивление резистора нам нужно R=5/0.1=50(Ом). Имея сопротивления резистора, рассчитываем мощность резистора P=5*0.1=0.5Вт.

То есть наш балластный резистор должен быть сопротивлением 50Ом и рассеиваемой мощностью 1ВТ, а 1 Вт — потому что всегда нужно брать резисторы с запасом в 1.5-2 раза, что бы небыло ситуаций как на этой очень удачно подобранной картинке 🙂

Поэтому запоминаем, что необходимо брать мощность резистора в 2 раза большей от расчетной!

Мощность резисторов на схемах указываются так:
— мощностью рассеивания 0,125 Вт
— мощностью рассеивания 0,25 Вт
— мощностью рассеивания 0,5 Вт
— мощностью рассеивания 1 Вт
— мощностью рассеивания 2 Вт
— мощностью рассеивания 5 Вт

Есть и далее продолжение маркировки, но это уже не обязательно, потому что это саамы ходовые мощности и больше редко используются в схемах

Последовательное и параллельное соединение резисторов
Так же для достижения нужного нам сопротивления мы можем подключать последовательно резисторы

, где общее сопротивление будет равно сумме всех сопротивлений и считается по формуле R=R1+R2+R3
И подключать резисторы параллельно

, где общее сопротивление будет равно сумме величин, обратно пропорциональных сопротивлению 1/R=1/R1+1/R2+1/R3. А при параллельном соединении 2-х резисторов удобно пользоваться этой формулой R=R1*R2/(R1+R2)

Делитель напряжения на резисторе

Делитель напряжения на резисторах часто используется в схемах для получения нужного напряжениях в отдельных цепях схемы.
Делитель напряжение, это два последовательно подключенные резистора. В нем выходное напряжение напрямую зависит от номиналов сопротивлений и питающего напряжения. Переменные резисторы так же являются делителями напряжения.

И прежде чем мы начнем рассматривать формулы, давайте выясним один очень важный момент.
Что бы четко рассчитывать нужное нам напряжение на выходе, используйте R2 сопротивлением в 100 раз меньше сопротивления нагрузки подключенной к выходу делителя

Рассмотрим самые нужные формулы для расчета делителя:

1. Нам известно входящее напряжение Uвх и сопротивление R1 и R2.
Uвых=Uвх*R2/(R1+R2)
Например, входящее напряжение 12В, резисторы R1=2.2к и R2=1к. Uвых=12В*1000Ом/3200Ом=3.75В

2. Известно нужное Uвых и сопротивление R1 и R2.
Uвх=Uвых*(R1+R2)/R2
Например, нам нужно получить 5 вольт для питания, резисторы R1=2.2к и R2=1к. Uвх=5В*3200Ом/1000Ом=16В

3. Определим значение R1 при известном Uвх, Uвых
R1=Uвх*R2/Uвых-R2
Например, входящее напряжение 12 вольт, выходящее напряжение 5В, значение R2=1к
R1= 12В*1000Ом/5В – 1000Ом=1400Ом

4. Определим значения R1 и R2, зная их суммарное сопротивление Rобщ и Uвх и Uвых
R2=Uвых*Rобщ/Uвх, R1= Rобщ-R2
Например R2=5В*3200Ом/12В=1333Ом, R1= 3200-1333=1867(Ом)

Это самые ходовый формулы, которые я использую уже около года, с тех пор, как только узнал о них

Делитель тока на резисторе

Делитель тока на резисторах необходим для того, что бы определенную нужную часть тока перевести в другое плече делителя и после вернуть его обратно.

Делитель тока это параллельно соединенные резисторы, делящие между собой протекаемый ток.

Применяют делители тока для измерительных приборов, когда основной ток проходит через шунтирующий резистор, а малая часть тока проходит через катушки измерительного прибора, которая является вторым сопротивлением в схеме. Так же применяется для усиления тока, когда одного резистора не хватает

Формула расчета шунта для измерительных приборов R2 =I1*R1/(Iобщ-I1),где R1 это сопротивление прибора, а I1 это ток отклонения катушки прибора.

Предположим что максимальный ток отклонения катушки 2мА, а внутреннее сопротивление катушки 300Ом. Максимальный ток, проходящий через цепь 5А. Исходя их формулы R2=0.002*300/5-0.002=0.12Ом, рассчитаем рассеиваемую мощность по формуле P=I^2*R , где I2=Iобщ-I1, P=5*5*0,12=3Вт. Поэтому берем резистор 5Вт.

Расчет делителя проходит по формуле I1=Iобщ*R2/(R1+R2) и I2=Iобщ*R1/(R1+R2)
Для примера. Рассчитаем токи, проходящие через R1=0,1Ом и R2=0,2Ом, если сумарный ток 5А.
I1=5А*0,2Ом/0,3Ом=3,33А и I2=5А*0,1Ом/0,3Ом=1,66А, определили проходящие токи, а теперь рассчитаем рассеиваемую мощность по формуле P=I^2*R. P1=3.33*3.33*0.1=1.1(Вт), P2=1.66*1.66*0.2=0.55Вт

И на этой ноте можно заканчивать материал. Изучайте, понимайте, задавайте вопросы.
С ув. Admin-чек

Распродажа на АлиЭкспресс. Успей купить дешевле!

Источник:
http://rustaste.ru/rezistor.html

Делаем переменный резистор из листа бумаги

Многие из вас, наверняка, видели резисторы, не зная их названия. Резисторы имеют цилиндровую форму, на них нанесены цветные полоски. Зачастую на напечатанных платах встречаются резисторы прямоугольной формы. В любом случае, независимо от формы резисторы имеют одно предназначение – ограничение тока. А что, если попробовать сделать резистор из обычного листа бумаги и обычного графитового карандаша.

Посмотрим видео переменного резистора:

Нам понадобится:
— Обычный лист бумаги;
— Графитовый карандаш;
— Светодиодная лампочка.

Известно, что графит хорошо проводит электрический ток. Эту особенность можно использовать для получения нашего бумажного резистора. Для этого берем самый обычный графитовый карандаш и на нашем листке бумаги рисуем полоску длиной 5-7 см и шириной в сантиметр.

Для лучшего результата советуется использовать грифельный карандаш с максимальной мягкостью. Однако, если такого карандаша нет, можно использовать в качестве альтернативы карандаши 5B или 6B.

Когда внешние линии полоски нарисованы, ее необходимо покрасить. Делать это нужно плотнее и максимально тщательно, чтобы не оставалось не закрашенных областей.

Полоска нашего переменного резистора готова. Его можно испробовать при помощи обычного вольтметра. Плюсовой контакт нужно поставить на один конец, а минусовый – на другой конец. Постепенно сближая минусовый контакт к плюсовому мы видим, что у нас получился самый настоящий переменный резистор.

Теперь испробуем наш резистор обычной светодиодной лампочкой. Для этого нам нужно соединить два контакта к девяти вольтовой батарейке.

Далее нужно соединить плюсовой контакт к светодиодной лампочке. Минусовый контакт лампочки нужно слегка отогнать, чтобы он лучше соприкасался с бумагой.

Теперь, когда все готово, нужно подсоединить свободный контакт лампочки к одному концу графитовой полоски, а второй контакт, идущий от батарейки – ко второму концу полоски.

Медленно продвигая второй контакт батарейки к светодиоду, можно увидеть, как яркость светодиодной лампочки увеличивается. Это значит, что чем ближе к светодиоду, тем меньше сопротивления в нашем бумажном резисторе.

Чем большей мягкости в карандаше, тем больше у резистора будет проводимость. Можно также попробовать нарисовать линии разных форм и ширины.

Источник:
http://usamodelkina.ru/2442-delaem-peremennyy-rezistor-iz-lista-bumagi.html

Здравствуйте уважаемый читатель блога Моя лаборатория радиолюбителя.

В сегодняшнем материале хотелось бы освятить довольно таки нужную тему о резисторах, в особенности вопрос о том, что такое резистор, возникает у новичков радиолюбителей. В этой обширной статейке я довольно таки подробно постараюсь объяснить, что такое резистор, как он выглядит и где применяется.

Читайте также  Как легко сделать заклепки из обычной проволоки - Журнал - Сам себе изобретатель

И так начнем повествование о резисторах, поэтому усаживаемся поудобнее за нашими мониторами, желательно сделать себе кофе и погрузиться в мир радиоэлектроники 🙂

Что такое резистор? Резистор – это пассивный элемент электрической схемы, создающий сопротивление электрическому току.
Где применяются резисторы? Применяются резисторы во всех схемах, и чаще, в количественном отношении, чем другие элементы схемы. С помощью резисторов регулируют значения тока и напряжения.
Единица измерения сопротивления – Ом. Измерения записываются в сторону увеличения: Ом, кОм(1000Ом)-килоом, мОм(1.000.000Ом)-мегаом и Гом(1.000.000.000Ом)-гигаом.

Типы резисторов:

Постоянные резисторы – это резисторы имеющие постоянное, неизменное, сопротивление независимое от воздействия окружающих воздействий, таких как свет, температура.
— так обозначаются на схемах постоянные резисторы и подписываются буквой R

Переменные резисторы — это резисторы меняющее свое сопротивление в зависимости от положения движка переменного резистора.

— так обозначаются переменные резисторы в схемах

Такие переменные резисторы используются в многой бытовой технике вокруг нас, старые телевизоры, где звук регулировали крутя ручку звука и подобные

Подстроечные резисторы — это те же самые переменные резисторы, но используемые для точных настроек токов и напряжений схем. Устанавливаются преимущественно на самих печатных платах.
— обозначение подстроечных резисторов на схемах

Фоторезисторы – это резисторы меняющие свое сопротивление под действием света.
— обозначение фоторезистора на схеме

Терморезисторы – резисторы меняющие свое сопротивление в зависимости от температуры, приложенной к нему
— схематическое обозначение терморезистор

Маркировка резисторов:

Маркировка по ГОСТу номинальный ряд
Все резисторы, выпускаемые нашей промышленностью, имеют свою особую сокращенную маркировку, дабы было удобно читать номинал на маленьких резисторах. Для сокращения используют буквы указывающие единицу измерения
E и R – единица Ома
К – единица кОм
M- мОм
А вот сотни единиц, обозначаются буквами, стоящими перед цифрами.
Например: 0,33Ом -E33, 33Ом-33E, 33кОм-33K, 330кОм-M33, 33мОм-33M.

Заграничный ГОСТ
Тут немного проще. По американским стандартам маркируются резисторы 3 буквами, две первые указывающие номинал, а третья — количество нулей добавляемых к номиналу
Например: 0,33Ом –R33, 33Ом-330, 33кОм-333, 330кОм-334, 33мОм-336.

Цветовая маркировка резисторов
На мой взгляд самая удобная и простая в использовании. Обозначается она разноцветными полосками на резисторе. Полосок бывает 4 и 5. Научится читать резисторы цветной маркировки очень просто:

-Первые две полосы указывают номинал резистора.

-Третья полоска, у резисторов с 4 полосами, указывает множитель, а у резисторов с 5 полосами, указывает третью цифру номинала.

-Четвертая полоса в 4 полосной маркировке говорит о точности номинала, а в 5 полосной указывает на множитель номинала.

-Пятая полоса указывает на точность

Что бы удобно было ориентироваться, вот табличка с цветовой кодировкой резисторов

К примеру, резистор номиналом 1 кОм с погрешностью 1% будет иметь код — коричневый черный красный коричневый

Мощность резисторов и рассеиваемая мощность

Каждый резистор, пропуская через себя напряжение, создает определенное падение напряжение, что обусловлено законом Ома (R=UI). Из-за этого на резисторе начинает рассеиваться тепло — это и есть рассеиваемая мощность. Эту мощность мы рассчитываем для сбережения целостности резистора, потому-то резистор имеют свою определенную рассеиваемую мощность, то есть сколько тепла он сможет выделить при падении на нем напряжения. Рассчитывается мощность по формуле P= I*U либо эти две для вычисления промежуточного параметра P=I^2*R или P=U^2/R

Для примера нам нужно рассчитать балластный резистор для блока питания 5В с током нагрузки 0,1А. Сначала по закону Ома рассчитаем, какое сопротивление резистора нам нужно R=5/0.1=50(Ом). Имея сопротивления резистора, рассчитываем мощность резистора P=5*0.1=0.5Вт.

То есть наш балластный резистор должен быть сопротивлением 50Ом и рассеиваемой мощностью 1ВТ, а 1 Вт — потому что всегда нужно брать резисторы с запасом в 1.5-2 раза, что бы небыло ситуаций как на этой очень удачно подобранной картинке 🙂

Поэтому запоминаем, что необходимо брать мощность резистора в 2 раза большей от расчетной!

Мощность резисторов на схемах указываются так:
— мощностью рассеивания 0,125 Вт
— мощностью рассеивания 0,25 Вт
— мощностью рассеивания 0,5 Вт
— мощностью рассеивания 1 Вт
— мощностью рассеивания 2 Вт
— мощностью рассеивания 5 Вт

Есть и далее продолжение маркировки, но это уже не обязательно, потому что это саамы ходовые мощности и больше редко используются в схемах

Последовательное и параллельное соединение резисторов
Так же для достижения нужного нам сопротивления мы можем подключать последовательно резисторы

, где общее сопротивление будет равно сумме всех сопротивлений и считается по формуле R=R1+R2+R3
И подключать резисторы параллельно

, где общее сопротивление будет равно сумме величин, обратно пропорциональных сопротивлению 1/R=1/R1+1/R2+1/R3. А при параллельном соединении 2-х резисторов удобно пользоваться этой формулой R=R1*R2/(R1+R2)

Делитель напряжения на резисторе

Делитель напряжения на резисторах часто используется в схемах для получения нужного напряжениях в отдельных цепях схемы.
Делитель напряжение, это два последовательно подключенные резистора. В нем выходное напряжение напрямую зависит от номиналов сопротивлений и питающего напряжения. Переменные резисторы так же являются делителями напряжения.

И прежде чем мы начнем рассматривать формулы, давайте выясним один очень важный момент.
Что бы четко рассчитывать нужное нам напряжение на выходе, используйте R2 сопротивлением в 100 раз меньше сопротивления нагрузки подключенной к выходу делителя

Рассмотрим самые нужные формулы для расчета делителя:

1. Нам известно входящее напряжение Uвх и сопротивление R1 и R2.
Uвых=Uвх*R2/(R1+R2)
Например, входящее напряжение 12В, резисторы R1=2.2к и R2=1к. Uвых=12В*1000Ом/3200Ом=3.75В

2. Известно нужное Uвых и сопротивление R1 и R2.
Uвх=Uвых*(R1+R2)/R2
Например, нам нужно получить 5 вольт для питания, резисторы R1=2.2к и R2=1к. Uвх=5В*3200Ом/1000Ом=16В

3. Определим значение R1 при известном Uвх, Uвых
R1=Uвх*R2/Uвых-R2
Например, входящее напряжение 12 вольт, выходящее напряжение 5В, значение R2=1к
R1= 12В*1000Ом/5В – 1000Ом=1400Ом

4. Определим значения R1 и R2, зная их суммарное сопротивление Rобщ и Uвх и Uвых
R2=Uвых*Rобщ/Uвх, R1= Rобщ-R2
Например R2=5В*3200Ом/12В=1333Ом, R1= 3200-1333=1867(Ом)

Это самые ходовый формулы, которые я использую уже около года, с тех пор, как только узнал о них

Делитель тока на резисторе

Делитель тока на резисторах необходим для того, что бы определенную нужную часть тока перевести в другое плече делителя и после вернуть его обратно.

Делитель тока это параллельно соединенные резисторы, делящие между собой протекаемый ток.

Применяют делители тока для измерительных приборов, когда основной ток проходит через шунтирующий резистор, а малая часть тока проходит через катушки измерительного прибора, которая является вторым сопротивлением в схеме. Так же применяется для усиления тока, когда одного резистора не хватает

Формула расчета шунта для измерительных приборов R2 =I1*R1/(Iобщ-I1),где R1 это сопротивление прибора, а I1 это ток отклонения катушки прибора.

Предположим что максимальный ток отклонения катушки 2мА, а внутреннее сопротивление катушки 300Ом. Максимальный ток, проходящий через цепь 5А. Исходя их формулы R2=0.002*300/5-0.002=0.12Ом, рассчитаем рассеиваемую мощность по формуле P=I^2*R , где I2=Iобщ-I1, P=5*5*0,12=3Вт. Поэтому берем резистор 5Вт.

Расчет делителя проходит по формуле I1=Iобщ*R2/(R1+R2) и I2=Iобщ*R1/(R1+R2)
Для примера. Рассчитаем токи, проходящие через R1=0,1Ом и R2=0,2Ом, если сумарный ток 5А.
I1=5А*0,2Ом/0,3Ом=3,33А и I2=5А*0,1Ом/0,3Ом=1,66А, определили проходящие токи, а теперь рассчитаем рассеиваемую мощность по формуле P=I^2*R. P1=3.33*3.33*0.1=1.1(Вт), P2=1.66*1.66*0.2=0.55Вт

И на этой ноте можно заканчивать материал. Изучайте, понимайте, задавайте вопросы.
С ув. Admin-чек

Распродажа на АлиЭкспресс. Успей купить дешевле!

Источник:
http://rustaste.ru/rezistor.html

Форум самодельщиков: Простейший резистор — Форум самодельщиков

  • Правила форума
  • Просмотр новых публикаций

Пройдя короткую регистрацию , вы сможете создавать и комментировать темы, зарабатывать репутацию, отправлять личные сообщения и многое другое!

Простейший резистор как сделать резистор

  • 3 Страниц
  • 1
  • 2
  • 3
  • Вы не можете создать новую тему
  • Вы не можете ответить в тему

#41 FaMaS

  • Mr.Transistor

  • Группа: Пользователи
  • Сообщений: 675
  • Регистрация: 25 October 09

#42 Dz3333

  • Криворучка)

  • Группа: Новички
  • Сообщений: 17
  • Регистрация: 16 June 10

#43 DOHTORZLO

  • Срач на форуме? Нет, не слышал

  • Группа: Пользователи
  • Сообщений: 1149
  • Регистрация: 09 November 09

#44 Quest

  • you so slow, my friend

  • Группа: Супермодератор
  • Сообщений: 2191
  • Регистрация: 12 September 10

#45 Никола-Тесла

  • Эйнштейн

  • Группа: Пользователи
  • Сообщений: 874
  • Регистрация: 14 April 11

как уже кое кто сказал немучайте себя,паяльники карандаш скрутите несколько и будет щастье.

#46 _DEVIL_

  • Самопальщик-профи

  • Группа: Пользователи
  • Сообщений: 120
  • Регистрация: 26 May 11

#47 super_spectra

  • Доктор Импровизации

  • Группа: Пользователи
  • Сообщений: 171
  • Регистрация: 19 April 11

А вот и возможно!

Резистор он что? Создаёт сопративление.

И грифель тоже создаёт.

Я это ещё 5 летним знал када мой дед электронику в своём мотоцикле чинил.

Ща вспомню название мотоцика. Ща. Почти вспонил. А всё вспомнил, ИЖ.

Источник:
http://sam0delka.ru/topic/947/page__st__40

Как сделать самодельный низкоомный резистор, электрическое сопротивление своими рукам. Расчет диаметра и длины провода для намотки проволочного сопротивления.

Содержание / Contents

  • 1 Вскрытие покажет. Потенциометр СПЗ-30 изнутри
  • 2 Немного про СП-1

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.
У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что? Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Читайте также  Дозревание помидоров в домашних условиях, правила сбора и способы хранения

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 1013 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 1011 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 106 Ом.

Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом

задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром

задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы. Удачи!

Литература: В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г. В. В. Фролов — «Язык радиосхем», 1988 г. М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Резистор изгиба своими руками

Ну, это смотря что вы собираете. Наклеить тензорезисторы на нужную заготовку несложно. Сложнее потом снимать с них показания. Я в далеком 2000м работал с ними. Самая главная проблема тензорезисторов — это их низкая чувствительность. Обычно используется мостовая схема с четырьмя тензорезисторами, чтобы их показания взаимно складывались. Но все равно сигнал получается очень слабый. Чтобы его усилить до уровня, воспринимаемого АЦП, необходима схема измерительного усилителя, которая состоит из трех операционников. Бывают, впрочем, однокристальные варианты с небольшим числом внешних элементов. Используются большие коэффициенты усиления, поэтому схема чувствительна к шумам и наводкам. Все слабосигнальные цепи необходимо экранировать; уделять большое внимание разводке цепей питания. В 2000м я так и не смог побороть наводку 50Гц, которая тогда составляла около 10% от полезного сигнала. Впрочем, я тогда не имел столько опыта работы со слабосигнальными цепями, так что сейчас, наверное, поборол бы. Также в мостовых схемах включения тензорезисторов составляет проблему разбаланс, особенно если мост состоит не из четырех одинаковых датчиков, а меньшего их количества. В недеформированном состоянии появляется постоянная составляющая на выходе схемы, которая может быть достаточно велика, чтобы вызывать насыщение усилителя. Поэтому применяют подстроечные резисторы для балансировки, а также другие трюки.

Короче говоря, тензорезисторы — довольно капризная штука, но при аккуратном подходе их можно одолеть.

Что такое сопротивление

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Для ответа на этот вопрос поможет сантехническая аналогия. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.


Резистор с переменным сопротивлением.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока, измеряемую в амперах. Сопротивление, которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов, измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала, из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить, сравнив с медью, у которой удельное сопротивление 0,0175Ом*мм².

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Переменное сопротивление – назначение

Переменные сопротивления главным образом применяются для регулировки громкости в различной бытовой и профессиональной радиоаппаратуре. Можно сказать, что они предназначены для плавного изменения напряжения или тока в различных электросхемах посредством изменения собственного сопротивления. Например, с их помощью можно плавно регулировать яркость свечения электрической лампочки.

Источник:
http://hockey-samara.ru/elektronika/rezistor-svoimi-rukami.html

Электронная нагрузка для блока питания своими руками

Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.

По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.

На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.

Схема электронной нагрузки для блока питания

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.

Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.

Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.

С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.

Читайте также  10 лучших наборов профессиональных фломастеров - рейтинг 2020

Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.

Радиодетали для сборки

  • Транзистор Т1 TIP41, MJE13009, КТ819
  • Транзисторы Т2, Т3, Т4, Т5 TIP36C
  • Стабилизатор напряжения L7812CV
  • Конденсатор С1 1000 мкФ 35В
  • Диоды 1N4007
  • Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
  • Радиаторы 4 шт. размер 100х63х33 мм
  • Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
  • Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания

Ионофон или поющая дуга из строчника

Защита аккумулятора от глубокого разряда

Секрет бестопливного генератора из двух электродвигателей

Индукционный нагреватель своими руками

Пушка Гаусса своими руками

Бегущие огни на светодиодах своими руками

80 comments on “ Электронная нагрузка для блока питания своими руками ”

В характеристиках устройства заявляете 50В 40А, нигде не ошиблись? 2кВт мощности эта поделка явно не выдержит.

Здесь есть одно но, чем выше напряжение тем меньший ток может выдержать транзистор. До 40А при напряжении 12В свободно выдерживает я проверял. Обычно аккумуляторы тестируют таким устройством. То что указано 50В это означает что можно подключать к 50В источнику питания, только максимальный ток нагрузки безопасный для транзисторов будет не более 1-3А. Например полностью заряженный аккумулятор от самоката выдает 42В. Подключаю к электронной нагрузке выставляю ток разряда 1А и определяю емкость аккумулятора.

Сергей, здраствуйте, я начинающий радиолюбитель, мне 27 годиков и слава Богу в своем возрасте я нашел себе хобби, но к сожалению, мне очень нехватает теоритической части, на данный момент у меня есть идея собрать нагрузку для компьютерного блока питания, но к сожалению мне не хватает опыта. Скажите возможно ли пообщаться с вами, так сказать нанять вас на полставки мои учителем? Готов обсудить с вами финансовую часть этого предложения. Если что я есть в телеграме и Вайбере по номеру+380636357466

Здравствуйте, скажите можно ли эту схему использовать для розрядки различных аккумуляторов(литий ионных, литий полимерных и т.п.)?

Добрый вечер, Юрий! Разряжать можно любые аккумуляторы, собственно для этого устройство и сделано, главное не превышать допустимый для аккумулятора ток разряда и следить за напряжением аккумулятора особенно если аккумулятор без BMS платы защиты.

Сергей подскажите на выводах подключения испытуемого БП должно быть КЗ? Или там должно быть какое то сопротивление? А то я собрал все как у вас, но + и — замкнуты накоротко, блок питания уходит в защиту, а аккумуляторы моментально греются от КЗ. Амперметр показывает 15А.

Нет, КЗ быть не должно. Хотя его можно легко сделать, повернув ручку переменного резистора. Попробуйте ручки обоих переменных резисторов покрутить до упора в разные стороны или поставить посередине, чтобы узнать в какую сторону происходит увеличение, а в какую уменьшение нагрузки. Провода к переменным резисторам можно по разному припаять. Когда вы вращаете ручку переменного резистора транзисторы Т2-Т5 открываются и закрываются, тем самым создавая сопротивление. Это все равно, что подключать к источнику питания разные сопротивления. Транзисторы служат своего рода мощными управляемыми переменными резисторами нагружающим источник питания. Проверьте как меняется напряжение на коллекторе транзистора Т1 при вращении ручек переменных резисторов. Если транзистор Т1 не исправен тогда постоянно будет КЗ на входе нагрузки.

При нагреве ток не поплывёт?

Нет с током все будет нормально.

Добрый вечер.Сергей! Шунт с вольт амперметра надо вырезать а на его место подсоединить шунт на 50 А или как?С уважением Иван

Добрый вечер, Иван! Шунт вырезать не надо. Если амперметр рассчитан на 10А то и шунт должен стоять на 10А, при установке шунта на 50А показания прибору будут не правильными.

Спасибо -надо покупать.

Добрый вечер Сергей!Собрал все по вашей схеме но при включении вылетают транзисторы TIP36-не было переменника на 1к поставил на 120 ОМ может из-за него?

Добрый вечер, Иван! Нет, переменник на 1К можно вообще не ставить без него будет работать. Что то не правильно собрано или транзисторы из Китая. У меня такое было прислали партию транзисторов все погорели. Китайцы брак делают. Десять Китайских транзисторов по мощности равны одному оригинальному. Теперь только в Чип и Дипе покупаю там нормальные детали продают.

Иван, всё дело в изначально криво построенной схеме. Вот здесь объяснение причин, почему она не будет нормально работать и некоторая доработка (насколько это вообще возможно для такой простой схемы):
forum.cxem.net/index.php?/topic/180026-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0/#comments

Уважаемый автор, повторил Вашу конструкцию — за исключением блока питания для кулеров и вольтметра: использовал сетевой адаптер 12V/1A, но не думаю, что это принципиально. Проверял на линейном стабилизаторе L7812 от другого устройства — разницы никакой.

Как нагрузка для БП она работает — тут вопросов нет. Но я не могу разобраться — ток чего именно индицирует амперметр Вашего устройства. Все дело в том, что больше одного ампера с копейками Ваш тестер не показывает — ни при каких тестах: все реальные показатели можно видеть только на индикаторах тестируемого БП. А если придется тестировать, скажем, БП для светодиодной ленты (как у Вас на фото)? У меня, как назло, ничего такого под руками не оказалось.

Словом, осталось непонятным соотношение между показателями ампеража на тестере и на тестируемых БП: как его расценивать. Например, вот этот китайский БП:
aliexpress.ru/item/32913030842.html?spm=a2g0s.9042311.0.0.274233edJzpZ3X
четко демонстрирует свои предельные параметры под нагрузкой Вашим тестером — 24V/6A, но видно их именно индикаторе VA, установленном там же, где и этот китайский БП, то есть в самодельном лабораторном БП (индикатор, кстати, точно такой же, как и на Вашем тестере). А на самом тестере в это время — меньше 1 A. Короче говоря, осталось непонятным: ток чего именно показывает тестер. Единственное, что более-менее соответствует, так это напряжение. Естественно, есть зависимость роста тока от напряжения, однако все в тех же указанных пределах. Проверял и такой же адаптер, которым запитал конструкцию: вольтаж 12V соответствует, но до номинального 1A даже близко не дотягивает: максимум 200mA. Проверял тот БП, где стоит L7812: раскачивается до 400mA, хотя этот линейный стабилизатор имеет максимум 1.5A. Нагрев ключей не измерял, но наощупь он где-то соответствует току.

Проверял Вашим тестером вот этот БП:
aliexpress.ru/item/4000125945816.html?spm=a2g0s.9042311.0.0.274233edhYLScD
Его можно «раскачать» тестером до предельных значений. Но опять же: при 30V/10 A на индикаторе тестера — аж 1,12 A. Наверное, я в чем-то не разобрался — помогите :).

Все дело в Китайских электронных вольтметрах. Если подключить к электронной нагрузке блок питания со встроенным Китайским вольтметром то показания двух приборов на БП и на ЭН будут отличаться в два раза. Выход из этой ситуации только в установке аналоговых стрелочных приборов на Электронную нагрузку или на время теста отключать вольтметр в тестируемом БП.

Заказал стрелочник у китайцев на 10А: посмотрю, что получится. Но есть мысль, что причина в шунте: обычно их рассчитывают в пределах от 1:99 (скажем, для миллиамперметра) до 5-6 раз — как в нашем случае. Кроме того, в китайском цифровике свой шунт на 10А, поэтому львиная доля тока просто течет мимо индикатора — ведь на проверяемых БП точно такие же индикаторы показывают вполне достоверные цифры. Видимо, здесь требуется какой-то другой расчет шунта, учитывающий «растекание» по параллельным цепям. А так нагрузка очень даже удобная. В конце концов, никто ведь не запрещает последовательного включения амперметра в мультиметре: я так и сделал, получив вполне реальные цифры тока. Правда, мультиметры, позволяющие измерять более 20А, мне не попадались.

По ходу конструирования пришла мысль использовать систему охлаждения устройства для китайских резисторов 4Ом/100Вт, обычно используемых для проверки УНЧ. Электрически с основной схемой они не связаны — просто добавлены к радиаторам и кулерам. Поставил 4 шт., что дает возможность комбинировать нагрузку перемычками на клеммах: например, два канала по 8 Ом/50 Вт или 2 Ом/200 Вт — рекомендую облегчить себе жизнь :). Это резисторы такого вида: aliexpress.ru/item/33026780964.html?spm=a2g0s.9042311.0.0.264d33edl5qQU1

Стрелочный прибор намного точнее будет, особенно если класс точности 2,5. Резисторы с радиаторами очень мощные. В Китае стоят не дорого. В наших магазинах цены как на золото.

Здравствуйте. Проводом какого сечения следует перейти от транзисторов к клеммам для проверки БП? То есть какой ток протекает в цепи коллекторов транзисторов Т2-Т5? Если задействовать все 40 ампер, то вопрос становится актуальным. И желательно указать мощность резистора R3. Спасибо.

Добрый вечер! Сечение провода от связки транзисторов до БП должно быть 4 мм/кв. Ток будет протекать по 10А на каждый транзистор. Резистор R3 мощностью 0.25 Вт будет достаточно.

Здравствуй Сергей! Я по поводу переделки Вашей схемы?! Как то попали ко мне транзисторы MJ11032_11033! Комплементпрная пара! Характеристики идеальные для создания электронной нагрузки. Правда они по схеме Дарлингтона! Но в Интернете я встречал схему электронной нагрузки на Дарлингтонах! По моему были собраны на КТ827, или КТ825!? Так вот вопрос тебе как Доку, можно ли применить из в электронной нагрузке. Все же по Datasheet, у него рассеиваемая мощность аж 300 Вт.

Добрый вечер, Лестанбек! В электронной нагрузке работать будут.

Источник:
http://sdelaitak24.ru/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%B4%D0%BB%D1%8F-%D0%B1%D0%BB%D0%BE%D0%BA%D0%B0-%D0%BF%D0%B8%D1%82%D0%B0%D0%BD/