Как узнать мощность теплообменника

Как узнать мощность теплообменника

Расчет пластинчатого теплообменника

Сначала мы рассмотрим, какие бывают теплообменники, а потом рассмотрим формулы расчета теплообменников. И Таблицы различных теплообменников по мощностям.

Паяный теплообменник AlfaLaval — неразборный!

AlfaLaval — Разборный с резиновыми прокладками

Основное предназначение теплообменников такого типа — это мгновенная передача температуры от одного независимого контура — другому. Это дает возможность получить тепло от центрального отопления к своей независимой системе отопления. Также дает возможность получать горячее водоснабжение.

Существуют разборные и неразборные теплообменники! AlfaLaval — Российского производства!

Паяный теплообменник AlfaLaval — неразборный!

В паяных теплообменниках из нержавеющей стали не нужны прокладки и прижимные плиты. Припой надежно соединяет пластины во всех точках контакта, что обеспечивает оптимальный КПД теплопередачи и высокое сопротивление давлению. Конструкция пластин рассчитана на длительный срок эксплуатации ППТ очень компактны, так как теплопередача происходит практически через весь материал, из которого они изготовлены. Они имеют небольшую массу и малый внутренний объем. Компания Альфа Лаваль предлагает широкий спектр аппаратов, которые всегда можно приспособить к конкретным требованиям заказчиков. Любые задачи, связанные с теплообменом, ППТ решают наиболее эффективным с экономической точки зрения способом.

Паяный пластинчатый теплообменник состоит из тонких гофрированных пластин из нержавеющей стали, соединенных между собой вакуумной пайкой с использованием меди или никеля в качестве припоя. Теплообменники, паянные медью, чаще всего применяются в системах теплоснабжения или кондиционирования воздуха, в то время как никельпаяные в основном предназначены для пищевой промышленности и для работы с агрессивными жидкостями.

Защита от смешения сред

В тех случаях, когда по правилам эксплуатации или по иным причинам требуется обеспечить повышенную безопасность, можно воспользоваться патентованными конструкциями паяных теплообменников с двойными стенками. В этих теплообменниках две среды отделены друг от друга двойной пластиной из нержавеющей стали. В случае внутренней протечки ее можно будет заметить на внешней стороне теплообменника, но смешения сред в любом случае не произойдет.

AlfaLaval — Разборный с резиновыми прокладками

Теплообменник: Жидкость — жидкость

1-пластины; 2-стяжные болты; 3,4-передняя и задняя массивная плита; 5-патрубки для присоединения контура теплоснабжения; 6-патрубки для присоединения трубопроводов системы отопления.

Получить отдельный замкнутый (независимый) отопительный контур системы отопления, при этом получая только тепловую энергию. Расход и давление не передаются. Тепловая энергия передается за счет передачи температуры теплопередающими пластинами по разные стороны которого протекает теплоноситель (отдающий тепло и принимающий тепло). Это дает возможность изолировать свою систему отопления от центральной сети отопления. Могут быть и другие задачи.

1-подающий патрубок для отпуска тепла; 2-обратный патрубок для отпуска тепла; 3-обратный патрубок для приема тепла; 4-подающий патрубок для приема тепла; 5-канал для приема тепла; 6-канал для отпуска тепла. Стрелками указано направление движения теплоносителя.

Схема системы отопления

Каждый пластинчатый теплообменник обладает значениями, которые необходимы для расчета.

Эффективность (КПД) теплообменника находиться по формуле

На практике эти значения равны 80-85%

Какие должны быть расходы через теплообменник?

По разные стороны теплообменника имеются два независимых контура, это означает, что расходы этих контуров могут быть разными.

Чтобы найти расходы нужно знать, сколько тепловой энергии потребуется для отопления второго контура.

Например, это будет 10 кВт.

Теперь нужно посчитать необходимую площадь пластин для передачи тепловой энергии по этой формуле

Полный коэффициент теплопередачи

Чтобы решить задачу нужно познакомиться с некоторыми типами теплообменников, и на их основе производить анализ расчетов подобных тепловых обменников.

Самостоятельно сделать расчет теплообменника у Вас не получиться по одной простой причине. Все данные, которые характеризуют теплообменник скрыты от посторонних лиц. Возникает трудность найти коэффициент теплопередачи от реального расхода! И если расход будет заведомо маленьким, то и КПД теплообменника будет не достаточным!

Увеличение мощности с уменьшением расхода приводит к увеличению самого теплообменника в 3-4 раза по количеству пластин.

У каждого производителя теплообменников есть специальная программа, которая подбирает теплообменник.

Чем выше коэффициент теплопередачи, тем быстрее этот коэффициент становиться меньше из-за отложение от накипи!

Графа «Теплоноситель» — контур 1 источника тепла.

Источник:
http://infobos.ru/str/833.html

Тепловой расчет теплообменных аппаратов

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет следующий вид:

  • Q – размер теплового потока, Вт;
  • F – площадь рабочей поверхности, м2;
  • k – коэффициент передачи тепла;
  • Δt – разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

  • G1 и G2 – расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • cp1 и cp2 – удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит – с другой. Эти величины (t1 вх ;t1 вых и t2 вх ;t2 вых ) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

  • Температура греющего носителя при входе t1 вх = 14 ºС;
  • Температура греющего носителя при выходе t1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t2 вых = 12 ºС;
  • Расход массы греющего носителя G1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости ср =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим мощность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 – 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 – 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Вы можете самостоятельно провести тепловой расчет на основе уравнений выше и получить результат в pdf-формате (в полях «Допустимые потери», «Давление расч.» и «Tmax» можно указать произвольные данные, единственное ограничение: Tmax > t1).

ВАЖНО: Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Читайте также  Плетение фенечек из лент своими руками, 4 мастер-класса

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата – основные взаимосвязанные показатели качества работы теплообменника. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности механического расчета теплообменника, поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Источник:
http://proteplo.org/blog/teplovoy-raschet-teploobmennika

Расчет теплообменника пластинчатого

В этой статье мы рассмотрим теорию расчета теплообменника пластинчатого типа:

  • Базовые понятия
  • Методы составления теплового баланса
  • Механизмы теплопередачи
  • Конвекционный механизм передачи тепла
  • Коэффициент теплоотдачи
  • Расчет средней разности температур
  • Пример расчета оборудования
  • Видео «Как рассчитать теплообменник?»
  • Онлайн калькулятор

Базовые понятия теплообмена для расчета

Расчет теплообменников производится при использовании базовой информации о теплообменных законах.

В этой статье рассмотрим некоторые понятия, применяемые при таких расчетах.

  • Удельная теплоемкость является количеством теплоэнергии, требуемой для того чтобы нагреть 1 килограмм вещества на 1 градус Цельсия. На основании сведений о теплоемкости показывается то, насколько сильно аккумулируется тепло. Для расчетов теплоэнергии берется среднее значение теплоемкости в определенном интервале температурных показателей.
  • Количество теплоэнергии, нужное для того чтобы нагреть 1 кг вещества от нулевой до требуемой температуры, называется удельной энтальпией.
  • Удельная теплота химических превращений является количеством теплоэнергии, выделяемой в процессе химической трансформации какой-либо единицы веса вещества.
  • Удельная теплота фазовых превращений определяет количество тепловой энергии, поглощаемое или выделяемое при превращении какой-либо единицы массы вещества из твердого в жидкое, из жидкого в газообразное агрегатное состояние и т.д.

Онлайн калькулятор расчета теплообменнника от компании ООО «Тепло Профи» поможет получить решение через 15 минут. Или вы можете воспользоваться теорией для теплообменника пластинчатого типа, которая изложена ниже в этой статье, и произвести необходимые расчеты самостоятельно.

Методы составления теплового баланса

Тепловой баланс может быть составлен внешним или внутренним методом. Первый связан с использованием величин удельных энтальпий, второй – с использованием величин теплоемкостей.

Для расчета тепловой нагрузки при внутреннем методе применяются различные формулы, что зависит от того, каким образом происходит протекание теплообменных процессов.

Если при теплообменном процессе не используются никакие превращения, а соответственно тепловые выделения или поглощения, рассчитать тепловую нагрузку можно за следующей формулой

Если при теплообменном процессе конденсируется пара или испаряется жидкость, протекают определенные химические реакции, тепловой баланс вычисляется по следующей формуле

Основанием для расчета теплового баланса в случае применения внешнего метода выступает факт поступления или выхода равного количества энергии в теплообменное устройство за определенную единицу времени. Внутренний метод отличается от внешнего тем, что при первом используются данные о процессах теплообмена, а при втором – данные внешних показателей.

Тепловой баланс по внешнему методу вычисляется таким образом:

Величина Q1 определяет количество энергии, поступающей в устройство и выходящей из него за единицу времени.

Для установления количества тепловой энергии, передающегося между различными средами, необходимо вычислить разницу энтальпий с использованием формулы

Теплообменный процесс может происходить и с использованием определенных химических или фазовых превращений. При этом количество тепловой энергии вычисляется за формулой

Механизмы теплопередачи в расчете теплообменников

Тремя основными видами для осуществления теплообмена являются конвекция, теплопроводность и излучение.

При теплообменных процессах, протекающих в соответствии с принципами механизма теплопроводности, теплоэнергия передается в виде переноса энергии упругих атомных и молекулярных колебаний. Переход данной энергии между разными атомами производится в направлении к снижению.

Расчет характеристик передачи тепловой энергии по принципу теплопроводности осуществляется по закону Фурье

Данные поверхностной площади, коэффициенте теплопроводности, температурном градиенте, периоде прохождения потока применяются для вычисления количества теплоэнергии. Понятием температурного градиента определяется изменение температуры в направлении теплопередачи на ту или иную единицу длины.

Коэффициент теплопроводности является скоростью теплообменного процесса, т.е. количеством тепловой энергии, проходящей через какую-либо единицу поверхности в единицу времени.

Как известно, металлы характеризуются наибольшим коэффициентом теплопроводности относительно других материалов, что обязательно должно учитываться при каких-либо расчетах теплообменных процессов. Что касается жидкостей, то они, как правило, имеют относительно меньший коэффициент теплопроводности по сравнению с телами в твердом агрегатном состоянии.

Вычислить количество передаваемой тепловой энергии для расчета теплообменников, при которых теплоэнергия передается между различными средами через стенку, можно с использованием уравнения Фурье. Она определяется как количество теплоэнергии, проходящей через плоскость, которая характеризуется очень малой толщиной:

После выполнения некоторых математических операций получаем следующую формулу

Можно сделать вывод, что падение температуры внутри стенки производится в соответствии с законом прямой линии.

Конвекционный механизм передачи тепла

Конвекция является еще одним способом передачи теплоэнергии. Она представляет собой передачу энергии объемами среды посредством их взаимного перемещения. Теплопередачей при этом называется передача теплоэнергии между рабочей средой и стенкой. Определение количества передаваемой тепловой энергии связано с использованием закона Ньютона

,где a является коэффициентом теплоотдачи.

При турбулентном движении среды на изменение данного коэффициента влияют величины:

  • физические характеристики теплоемкости, плотности и иной текучей среды;
  • условия, при которых теплоотдающая поверхность омывается жидким или газообразным веществом;
  • условия, которыми ограничивается поток, такие как длина, поверхностные шероховатости и др.

Итак, коэффициент теплоотдачи является функцией некоторых величин, что можно увидеть по следующей формуле

Благодаря методу анализа размерностей может быть выведена взаимосвязь критериев подобия, которыми характеризуется теплоотдача при турбулентном движении потока в различной по форме трубах.

Для вычисления этой связи используется такая формула

Коэффициент теплоотдачи в расчете теплообменников

В химической технологии часто можно встретить случаи обмена теплом между 2-мя текучими средами через разделяющую стенку. Процесс теплообмена проходит в три этапа. Поток теплоэнергии для установившегося процесса характеризуется неизменностью.

Сначала рассчитывается тепловой поток, проходящий от одной среды к стенке, затем через стенку поверхности, передающей тепло, а после этого от стенки к другой рабочей среде.

Таким образом, расчеты проводятся с помощью трех формул

Результатом решения уравнений является формула

Расчет средней разности температур

Поверхность теплообмена рассчитывается при определении требуемого количества теплоэнергии посредством теплового баланса.

Расчет требуемой теплообменной поверхности осуществляется с использованием той же формулы, что и при расчетах, осуществляемых раннее:

Температура рабочих сред, как правило, изменяется при протекании процессов, связанных с теплообменом. То есть будет фиксироваться изменение разности температур вдоль теплообменной поверхности. Следовательно, рассчитывается средняя разница температур. Вследствие нелинейности изменения температур осуществляется расчет логарифмической разности

Противоточное движение рабочих сред отличается от прямоточного тем, что требуемая площадь теплообменной поверхности в данном случае должна быть меньше. Для вычисления разности температурных показателей при использовании в одном и том же ходу теплообменника и противоточного, и прямоточного потоков используется следующая формула

Основная цель проведения расчета заключается в вычислении требуемой площади теплообменной поверхности. Тепловая мощность задается в техническом задании, но в нашем примере мы произведем и ее расчет с той целью, чтобы проверить само техзадание. В некоторых случаях бывает и так, что в исходной информации может оказаться ошибка. Нахождение и исправление такой ошибки является одной из задач грамотного инженера. Использование подобного подхода очень часто связано со строительство небоскрёбов с целью разгрузки оборудования по давлению.

Пример расчета теплообменника

Для расчета требуемой мощности (Q0) используется формула теплового баланса. Здесь Ср выступает в качестве удельной теплоёмкости (табличного значения). Чтобы упростить расчеты, можно взять приведённый уровень теплоемкости

Следует учитывать, что в соответствии с формулой, вне зависимости от стороны, по которой проводится расчет.

Далее необходимо найти требуемую поверхностную площадь, исходя из основного уравнения теплопередачи, где k является коэффициентом теплопередачи, а ΔТср.лог. – среднелогарифмическим температурным напором, вычисляемым по формуле:

При неопределенном коэффициенте теплопередачи теплообменник пластинчатого типа рассчитывается более сложным методом. По формуле можно вычислить критерий Рейнольдса.

Найдя в таблице значение критерия Прандтля, которое нам необходимо, можно вычислить критерий Нуссельта формулы, где n = 0,3 – при охлаждении жидкости, n = 0,4 – при нагреве жидкости.

Далее на основании формулы можно вычислить коэффициент теплоотдачи от любого теплоносителя к стенке, а в соответствии с формулой определить коэффициент теплопередачи, подставляемый в формулу, с помощью которого вычисляется площадь поверхности теплообмена.

Видео «Как рассчитать теплообменник?»

Источник:
http://oborudka.ru/favorit140/8.htm

Что нужно для расчета теплообменника

Если необходимо сделать выбор и установку конкретного теплообменника, нужно учесть все особенности объекта

Читайте также  Самсунг при звонке блокируется экран

Что нужно для расчета теплообменника

Поэтому неотложной операцией на подготовительном этапе является расчет теплообменника с одновременной оценкой его будущей работы в системе, к которой он будет подключен. Имея результат такого расчета, подбор теплообменника будет осуществлен наиболее правильно.

Необходимые параметры

Для того, чтобы приобрести устройство, как можно более полно удовлетворяющее заявленным требованиям, необходимо иметь данные о следующих параметрах:

1. Место установки агрегата и характеристики системы, где он будет эксплуатироваться (тепловая сеть, горячее водоснабжение, вентиляция и т.д.).

2. Тепловаянагрузка и мощность устройства (вместо тепловой нагрузки могут быть использованырасходные данные по воде).

3. Среда, в которой будет работать теплообменник.

4. Температура рабочей среды.

Проанализировав все эти параметры, можно определиться с техническими характеристиками нужного теплообменника. Расчет даст возможность подобрать конкретную конструкцию, вплоть до количества и массы пластин, материала их изготовления, уплотнений, компоновки и размеров рамы.

Алгоритм расчета.

С чего же начать расчет теплообменного устройства? Отправными сведениями для этого служит объем подогреваемой среды, а также разница температур между контактирующими веществами.

Для расчета мощности теплообменного агрегата используется уравнение P = 1,16∆Т / (tV), составные части которого означают следующие величины:

· Р – требуемая мощность;

· 1,16 – рассчитанная постоянная (не изменяется);

· ∆Т – разница показателей температуры;

· t и V – показатели времени и объема.

Также для расчета имеют большое значение такие показатели:

· расход воды, проходящей через аппарат;

· коэффициент передачи тепла;

· температурная разница между рабочими веществами.

Эти величины рассчитываются путем решения уравнений теплового баланса.

Тепловой баланс можно отобразить в видеQ = Q1 = Q2, в котором величина Q означает количество теплоты, передаваемое теплоносителем (в ваттах).

Отсюда получается, что Q1 = G1c1•(t1н – t1к) и Q2 = G2c2•(t2к – t2н), где:

· G1,2 – расход воды в устройстве, (кг/ч);

· с1,2 – теплоемкости горячего и холодного теплоносителя (Дж/кг•град);

· t1,2 н – начальная температура горячего и холодного теплоносителя (°C);

· t1,2 к – конечная температура горячего и холодного теплоносителей (°C).

Откуда же можно получить требуемыеданные для проведения расчета баланса по теплу? Таких источников несколько:

· технические условия предприятия – изготовителя;

· технические задания конструктора и технолога;

· в составленном проекте тепловой системы или в тепловом пункте, где она установлена;

· в договорных документах на обеспечение теплом с поставщиком.

Приведенные расчеты отличаются довольно большой сложностью, ошибиться в них крайне нежелательно. Это может привести к неприятностям и дополнительным материальным затратам в дальнейшем. Качественнее всего проведет тепловые расчеты специалист, имеющий опыт в этой области.В ходе расчета им используются специальные формулы, учитывающие все особенности работы будущей системы. По окончанию проведения расчетов клиенту выдается официальный лист с изложенным порядком расчета и результатом, по которому делается вывод о пригодности работы данного аппарата в конкретной системе.

Источник:
http://teploobmennic.ru/blog/sovety-pokupatelyam/chto-nuzhno-dlya-rascheta-teploobmennika/

Какие данные нужны для подбора теплообменника

Какие данные нужны для подбора теплообменника

Итак, у Вас встала необходимость покупки теплообменника. Примерно половина запросов на подбор аппаратов от непрофессионалов теплотехников, примерно такого уровня:

«Мне нужен теплообменник, но я не знаю, какие данные нужны для подбора».

Ну что ж, начнем по порядку:

Первое, что вы формулируете на подборе — система, в которой будет работать теплообменник. Для отопления и вентиляции вам нужно знать мощность системы отопления или вентиляционной установки (см. паспорт) и температурные графики.

Для системы ГВС — количество точек водоразбора (число смесителей) и так же температурные графики. О теплообменниках ГВС мы уже писали, а именно о подборе на «летний режим работы» для корректной круглогодичной работы аппарата.

А для холодоснабжения, при подборе промежуточного аппарата для чиллера — точные температурные графики, мощность аппарата и рабочие среды. ТО на холодоснабжение, в связи с низкими рабочими температурами не более 18С, работают на малых температурных напорах, и больших расходах, что приводит к увеличению требуемой площади.

Разборный теплообменник для чиллера мощностью 300-400 кВт, будет иметь весь порядка 800 кг и рабочую площадь 100 — 120 м2. Как понимаете, чем больше ТО, тем он дороже и максимально корректные данные помогут сэкономить 30 -50% бюджета, который находится в пределах 600-800 тыс. руб. В ценах середины 2018 года.

Далее, что немаловажно при выборе аппарата — гидравлические потери. Чем больше потери, вы можете позволить себе на теплообменнике, а это вопрос в первую очередь к насосам, тем дешевле получится аппарат.

Запас поверхности и коэффициент теплопередачи.

Эти параметры вы как заказчик, можете проверить в расчетных листах на оборудование. Так для системы отопления запас принимают 10-15%, а для системы ГВС 15-30%. В то же время при расчете ТО на холод, запас может быть и 0,1% в связи с низкими температурами и чистыми средами.

Запас поверхности, в физическом смысле обеспечит сохранение рабочих параметров аппарата при начальном, естественном загрязнении. Любой теплообменник при работе сначала немного загрязняется и далее выходит на стабильную работу. Как раз для компенсации первоначального загрязнения принимают запас.

А коэффициент теплопередачи, показывает на сколько интенсивно используется рабочая площадь. Чем больше этот показатель — тем больше тепло передается через каждый кв. метр пластин. Однако, при увеличении коэффициента теплопередачи выше 6500 — 7000 ккал/м2*Ч*К рабочий процесс вызывает значительное загрязнение пластин кристаллическими образованиями.

Резюмируя, для корректного подбора, вам нужно сообщить мощность и температурные графики и обратиться к профессионалам, работающим в программах производителя.

ЧТО Я ДОЛЖЕН СООБЩИТЬ ДЛЯ ЗАКАЗА ТЕПЛООБМЕННИКА?

1) Выделенная мощность. Или мощность процесса теплообмена. Обычно, характеризуется системой потребителем. указывается — (кВт, ккал/ч).

2) Если не знаете мощность — в случае ГВС нужно сообщить кол-во точек водоразбора (сколько будет умывальников, душевых, кранов),
а например, для системы отопления — мощность из паспорта или площадь и характеристики помещения.

3) Источник тепла и температурные графики (Тепло от котельной, Тепловые Сети, прочее)?
Температурные графики важны как для источника тепла, так и для системы — потребителя.

ЕСЛИ ВЫ ЗАТРУДНЯЕТЕСЬ СООБЩИТЬ ПАРАМЕТРЫ — ВАМ ПОМОЖЕТ НАШ ИНЖЕНЕР.
ЗАКАЖИТЕ КОНСУЛЬТАЦИЮ — КНОПКА ВВЕРХУ СТРАНИЦЫ ИЛИ ПОЗВОНИТЕ ПО ТЕЛЕФОНУ:

(812) 645-14-30 или (800) 301-45-05 — ЗВОНОК ПО РОССИИ БЕСПЛАТНЫЙ

ПОЧЕМУ МНЕ НЕ МОГУТ СКАЗАТЬ ЦЕНУ ТЕПЛООБМЕННИКА ПО ТЕЛЕФОНУ?

Пластинчатый Теплообменник — это сложный инженерный прибор и рассчитывается индивидуально под конкретные параметры Вашего объекта или системы. Поэтому, для теплообменника не может быть прайса — каждое изделие оригинально.

Первое, что мы делаем — это расчет в программе производителя, для подбора именно Вашего индивидуального решения. И уже после расчета — программа формирует цену аппарата. Цена зависит от типа аппарата, количества пластин и условий работы.

ПРОЦЕСС РАСЧЕТА ТЕПЛООБМЕННИКА И ФОРМИРОВАНИЯ ЦЕНЫ ЗАНИМАЕТ НЕ ТАК МНОГО ВРЕМЕНИ.

Обычно, в течении часа Вы получаете коммерческое предложение с указанием точной цены и срока производства теплообменника (от 3 раб. дней) и расчетный лист с тех.параметрами, чертежами и габаритными размерами.

Если хотите посмотреть типовые цены — ЖМИТЕ НА ССЫЛКУ — ВНИМАНИЕ, стоимость вашего теплообменника может отличаться от похожего типового решения в прайс-листе.

— Вся техническая документация выложена в открытом доступе в соответствующих разделах сайта.

— Техническая документация по промышленным теплообменникам: Перейти по ссылке (Откроется в новом окне)

Источник:
http://teplosnab.pro/blog/kakie-dannye-nuzhny-dlya-podbora-teploobmennika/

Расчет теплообменника пластинчатого

Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.

Данные теплообменника, которые нужны для технического расчета:

  • тип среды (пример вода-вода, пар-вода, масло-вода и др.)
  • тепловая нагрузка (Гкал/ч) или мощность (кВт)
  • массовый расход среды (т / ч) — если не известна тепловая нагрузка
  • температура среды на входе в теплообменник °С (по горячей и холодной стороне)
  • температура среды на выходе из теплообменника °С (по горячей и холодной стороне)

Для расчета данных также понадобятся:

    • из технических условий (ТУ), которые выдает теплоснабжающая организация
    • из договора с теплоснабжающей организацией
    • из технического задания (ТЗ) от гл. инженера, технолога

Подробнее об исходных данных для расчета

  1. Температура на входе и выходе обоих контуров.
    Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник.
  2. Максимально допустимая рабочая температура, давление среды.
    Чем хуже параметры, тем ниже цена. Параметры и стоимость оборудования определяют данные проекта.
  3. Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
    Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту.
    Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913.
  4. Тепловая мощность (Р, кВт).
    Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше):
    P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 — t2).
  5. Дополнительные характеристики.
    • для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
    • средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура)
      и ΔT2 = T2 (вход холодного контура) — T3 (выход холодного контура);
    • уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.
Читайте также  Что нужно сделать перед продажей, передачей либо обменом iPhone, iPad или iPod touch с доплатой - Служба поддержки Apple

Подбор и расчет стоимости теплообменника удобным для вас способом

Получить консультацию

Проконсультируем по задаче
Подскажем где взять данные
Поможем с подбором
Скажем цену по маркировке

Рассчитаем по параметрам

Делаем расчёт точно и профессионально, без всяких манипуляций

Есть готовый расчет теплообменника?

Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника

Откуда взять расчетные данные для ПТО?

Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).

Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.

ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование

Виды технического расчета теплообменного оборудования

Тепловой расчет

Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.

Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.

Давайте рассмотрим пример общего расчета.

В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.

Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],

Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];

При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:

r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк – температура конденсата на выходе из аппарата [°C].

Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:

Благодаря данной формуле определяем расход теплоносителя:

Формула для расхода, если нагрев идет паром:

G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].

Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:

∆tср = (∆tб — ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм – большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:

δст – толщина стенки [мм];
λст – коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
Rзаг – коэффициент загрязнения стенки.

Конструктивный расчет

В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.

Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.

Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:

F = Q/ k·∆tср [м 2 ]

Размер проходного сечения теплоносителей определяют из формулы:

S = G/(w·ρ) [м 2 ]

G – расход теплоносителя [кг/ч];
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:

Gгр, нагр – расход теплоносителей [кг/ч];
∆Pгр, нагр – перепад давления теплоносителей [кПа];
tгр, нагр ср – средняя температура теплоносителей [°C];

Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную.

Ниже представлена формула, по которой высчитываем количество каналов среды:

Gнагр – расход теплоносителя [кг/ч];
wопт – оптимальная скорость потока теплоносителя [м/с];
fк – живое сечение одного межпластинчатого канала (известно из характеристик выбранных пластин);

Гидравлический расчет

Технологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление.

Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена:

∆pп – потери давления [Па];
λ – коэффициент трения;
l – длина трубы [м];
d – диаметр трубы [м];
∑ζ – сумма коэффициентов местных сопротивлений;
ρ – плотность [кг/м 3 ];
w – скорость потока [м/с].

ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование

Как проверить правильность расчета пластинчатого теплообменника?

При расчете данного теплообменника обязательно нужно указать следующие параметры:

  • для каких условий предназначен теплообменник, и какие показатели он будет выдавать.
  • все конструктивные особенности: количество и компоновка пластин, используемые материалы, типоразмер рамы, тип присоединений, расчетное давление и т.д.
  • габариты, вес, внутренний объем.

— Габариты и типы присоединений

— Расчетные данные

Они должны подходить под все условия, в которых будет подключаться, и работать наш теплообменник.

— Материалы пластин и уплотнений

в первую очередь должны соответствовать всем условия эксплуатации. Для примера: к агрессивной среде не допускаются пластины из простой нержавеющей стали, или, если разбирать совсем противоположную среду, то ставить пластины из титана, для простой системы отопления не нужно, это не будет иметь никакого смысла. Более подробное описание материалов и их соответствия определенной среде, вы можете посмотреть здесь.

— Запас площади на загрязнение

Не допускаются слишком большие размеры (не выше 50%). Если параметр больше – теплообменник выбран некорректно.

Пример расчета пластинчатого теплообменника

Исходные данные:

  • Нагрузка (кол-во тепла) 2,5 Гкал/час
  • Массовый расход 65 т/час
  • Среда: вода
  • Температуры: 95/70 град С

Переведем данные в привычные величины:

Q = 2,5 Гкал/час = 2 500 000 ккал/час

G = 65 000 кг/час

Давайте проведем расчет по нагрузке, чтобы узнать массовый расход, так как данные тепловой нагрузки являются самыми точными, ведь покупатель или клиент не способен точно подсчитать массовый расход.

Выходит, что представленные данные являются неверными.

Данную форму также можно использовать, когда мы не знаем каких-либо данных. Она подойдет если:

  • отсутствует массовый расход;
  • отсутствуют данные тепловой нагрузки;
  • неизвестна температура внешнего контура.

Источник:
http://www.teploprofi.com/raschet-teploobmennika-plastinchatogo/