Прибор для измерения силы

Прибор для измерения силы

Прибор для измерения силы, или динамометр – устройство, с помощью которого измеряется величина силы или момента силы. Изобретенное более 200 лет назад оно со временем постепенно совершенствовалось, становясь все более компактным, удобным и точным. О том, что собой данный прибор представляет, из чего состоит, как работает, каких видов бывает, пойдет речь в данной статье.

Измерение силы в системе СИ

В системе СИ единицей измерения силы являются ньютоны (сокращенно Н). Один ньютон – это такая сила, которая за 1 секунду способна изменить скорость движения твердого тела, имеющего массу 1 кг, на 1 м/с.

На заметку. Так как ньютон является в системе СИ не основной, а производной единицей, ее обозначение пишется с большой (заглавной) буквы, в то время как полное название – с маленькой.

Так как ньютоны являются производной единицей, то в современных измерителях они заменены на килограммы. Единственной сферой, где данную единицу измерения используют, являются лабораторные учебные приборы, применяемые в школах, средне специальных учебных заведениях.

Принцип действия и история изобретения

Первым устройством для измерения силы были изобретенные в первой половине XVIII века весы. Самый простой пружинный измеритель был сконструирован только спустя 100 лет в 1830 году английским ученым Ричардом Солтером. Вслед за измерителями механическими в первой половине XX были изобретены гидравлические приборы. Более совершенные и точные электрические динамометры появились уже во время бурного развития полупроводниковых приборов во второй половине XX века.

Самый простой измеритель силы имеет следующее принципиальное устройство:

  • Упругий силовой элемент – упругое тело, на которое напрямую воздействует измеряемая сила. Таким элементом могут быть стальная, обладающая высокой упругостью пружина, вода, различные датчики.
  • Измеряющее устройство (аналоговое или цифровое) – жидкокристаллический дисплей, круглый градуированный циферблат или шкала, по которым перемещается подвижная стрелка.

Работает самый простой пружинный динамометр следующим образом:

  1. На упругий силовой элемент – пружину воздействует измеряемая сила, вызывая его деформацию (растяжение).
  2. Растягивающаяся пружина приводит в движение закрепленную на ней стрелку, которая, передвигаясь по вертикальной шкале, регистрирует величину приложенного к концу упругого элемента усилия.
  3. После снятия усилия пружина сжимается, стрелка возвращается в исходное положение, соответствующее нулевому значению.

На заметку. Основой функционирования любого динамометра является закон Гука, гласящий, что величина возникающей в упругом теле деформации прямо пропорционально вызвавшему ее усилию.

Точность и корректность получаемых с помощью такого прибора данных гарантированы только при условии применения в его конструкции упругого тела, деформирующегося под воздействием внешней силы и принимающего после его прекращения исходное состояние.

К таким телам относятся всевозможные пружины, а также заключенные в цилиндры жидкости.

Виды приборов

В зависимости от конструкции и принципа действия, все динамометры подразделяются на механические, гидравлические, электрические. Особой категорией измерителей силы являются одноразовые датчики.

Механические (рычажные или пружинные) динамометры

Механические динамометры измеряют силу и ее момент, благодаря таким физическим процессам, как упругое растяжение и сжатие.

Основными разновидностями таких приборов являются:

  • Рычажные – в таких приборах упругим телом служит рычаг, деформация которого передается на соединенный с ним датчик или измерительное устройство;
  • Механические – это самые простые и распространенные динамометры, состоят из упругой пружины, соединенной со стрелкой, перемещающейся по круглой или вертикальной шкале, с нанесенными делениями, или датчиком, который передает электрический сигнал на электронный блок с электронным табло (монохромным жидкокристаллическим дисплеем).

На заметку. Перед тем, как измерить силу с помощью механического динамометра, являющегося по своей сущности и конструкции обычным безменом, обязательно убеждаются в том, что стрелка на круглой или вертикальной шкале расположена на значении «0». Если стрелка сбилась и показывает при отсутствии нагрузки значение больше нуля, то значит, что упругий элемент претерпел непоправимую деформацию, вызванную приложением к нему нагрузки, значительно превышающей предельно допустимую. Такой прибор уже не будет точным и со временем выйдет из строя.

Гидравлический динамометр

Гидравлический измеритель состоит из:

  • Нескольких цилиндров, внутри которых находятся подвижные штоки с поршнями;
  • Рычага, закрепленного на верхней части штоков;
  • Измеряющего устройства (манометра).

В качестве рабочей жидкости в таких измерителях применяется масло.

Работает такой прибор следующим образом:

  1. Прикладываемое к рычагу усилие через штоки и поршни воздействует на находящуюся в цилиндрах жидкость;
  2. Вытесняемая жидкость по трубкам поступает к манометру;
  3. Манометр измеряет давление поступившей из цилиндров жидкости и отображает его на круглой аналоговой стрелочной шкале или жидкокристаллическом монохромном цифровом дисплее в виде определённого значения воздействующего на рычаг усилия.

Такие приборы позволяют определять значение силы с большей точностью, чем механические аналоги. Однако, по сравнению с последними, такие динамометры характеризуются более высокой ценой, дорогостоящим ремонтом и обслуживанием, неточностью при разгерметизации цилиндров и появлении протечек рабочей жидкости.

Электрический динамометр

Электрические динамометры состоят из:

  • Упругого элемента, соединённого с реагирующим на его деформацию датчиком индуктивного, емкостного, пьезоэлектрического, вибрационно-частотного или тензорезисторного типа;
  • Усилителя поступающего от датчика электрического сигнала;
  • Электронного блока, оборудованного дисплеем.

Принцип действия такого прибора достаточно прост:

  1. Усилие, прилагаемое к упругому телу, регистрируется датчиком;
  2. Датчик посылает электрический сигнал на усилитель, который, в свою очередь, передает его на электронный блок;
  3. Электронный блок со встроенной микросхемой переводит полученный от усилителя сигнал в графическое изображение значения силы на дисплее.

На заметку. Так как такие электрические приборы, в отличие от большинства механических и гидравлических, снабжены электронным блоком и дисплеем, перед использованием их необходимо включать специальной кнопкой. Питание таких приборов осуществляется от встроенных аккумуляторных батарей. Некоторые модели можно для обеспечения питанием подключать к сети, имеющей напряжение 220 В. Устройства, имеющие разряженное питание или не подключённые к сети, включаться и работать не будут.

Одноразовые датчики

Такие датчики, в отличие от описанных выше аналогов, используются для измерения разрушительных нагрузок, имеющих огромную мощность: очень сильного удара, мощного взрыва. Однако перед тем, как потерять целостность и полностью выйти из строя, они достаточно точно измеряют и передают на расположенный на безопасном расстоянии электронный блок данные о силе, разрушившей их.

Применение динамометров

Измерители силы широко используются в транспорте, коммунальном хозяйстве, спорте и реабилитационной медицине, робототехнике, создании протезов, производстве весов, строительстве гидротехнических сооружений, испытании тяговых механизмов грузовых автомобилей, электро,- и тепловозов.

На заметку. Узнать о том, какой прибор служит для более точного измерения силы, можно на специализированных строительных, автомобильных или спортивных форумах, сайтах производителей и поставщиков подобных устройств. Также на данных информационных интернет ресурсах можно получить помощь в виде онлайн консультации по любому связанному с динамометрами вопросу.

Основными примерами повседневного использования динамометров являются:

  • Обычные весы (электронные и аналоговые);
  • Медицинские силомеры, используемые для определения усилия кистевого сжатия;
  • Динамометрические (моментные) ключи, применяемые для затяжки резьбовых соединений с определенным усилием.

Знание того, каким прибором измеряют силу, позволяет не только взвешивать различные предметы с помощью безменов и весов, но и соблюдать усилия затяжки резьбовых соединений, производить определение состояния тонуса мышц рук.

Наглядно действие такого прибора можно посмотреть в следующем видео.

Источник:
http://amperof.ru/instrument/pribor-dlya-izmereniya-sily.html

Единицы силы. Измерение силы. Динамометр

38 000 репетиторов из РФ и СНГ

Занятия онлайн и оффлайн

Более 90 дисциплин

План-конспект урока по теме «Единица силы. Измерение силы. Динамометр »

Тема: « Единица силы. Измерение силы. Динамометр »

Образовательная: усвоение определения основной единицы силы(1 ньютон), формирование понятия «динамометр»;

Развивающая: понимание устройства и принципа действия динамометра ; развивать познавательный интерес;

Воспитательная: прививать культуру умственного труда, аккуратность, учить видеть практическую пользу знаний, продолжить формирование коммуникативных умений, воспитывать внимательность, наблюдательность.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

Исаченкова, Л. А. Физика : учеб. для 7 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский ; под ред. А. А. Сокольского. Минск : Народная асвета, 2017.

Организационный момент (5 мин)

Актуализация опорных знаний (5мин)

Изучение нового материала (15 мин)

Физкультминутка (1 мин)

Закрепление знаний (14 мин)

Итоги урока (5 мин)

Организационный момент (проверка присутствующих в классе, проверка выполнения домашнего задания , озвучивание темы и основных целей урока )

Актуализация опорных знаний

Сила характеризуется числовым значением(модулем), направлением и точкой приложения. Чтобы определить числовое значение силы, нужно измерить силу, т. е. сравнить ее с другой силой, принятой в качестве единицы силы. Что принято за единицу силы?

Изучение нового материала

Главный результат действия силы — изменение скорости движения тела, которая сама по себе никогда не изменяется. Исходя из этого, была выбрана в СИ единица силы — 1 ньютон (1 Н), названная в честь английского ученого Исаака Ньютона. Существуют кратные и дольные единицы силы: 1 кН = 1000 Н, 1 мН = 0,001 Н.

Сила, как вы знаете, может не только изменить скорость, но и вызвать деформацию тела. Пружина растягивается (рис. 143), потому что на нее действует вес груза, который притягивает Земля.

Какой массой должно обладать тело, чтобы действующая на него сила тяжести равнялась 1,0 Н? Исследования показали, что с силой F = 1,0 Н

Земля притягивает тело массой т = 0,102 кг. Определим значение коэффициента g , входящего в формулу силы тяжести F = gm . Из формулы видно, что g = . Так как на тело массой 0,102 кг .

Читайте также  Как хранить никелевые аккумуляторы для шуруповерта правильно

Земля действует с силой F = 1,0 Н, то:

Значит, если масса тела равна 1,0 кг, то действующая на него сила тяжести F = gm = 9,8 Н. Следовательно, и вес этого тела (если оно находится в состоянии покоя или движется равномерно) Р = 9,8 Н. Ни в коем случае нельзя приравнивать вес и массу, что, к сожалению, часто встречается в быту. Это разные физические величины, и единицы у них разные. Масса измеряется в килограммах, вес — в ньютонах (рис. 144).

Если ваша масса m = 50 кг, то ваш вес Р = 500 Н.

Как измерить силу? Для этого нужно создать измерительный прибор. Будем подвешивать к пружине сначала одну гирю массой т = 102 г = 0,102 кг, затем две, три и т. д. Отметим метками положения указателя (рис. 145), напротив которых ставим значения 1 Н, 2 Н, 3 Н и т. д.

Пружина с указателем и шкалой представляет собой прибор для измерения сил — динамометр (от греч. dynamis — сила и metreo — измеряю) (рис. 146). Динамометром можно измерять не только вес тела, но и любые силы.

Динамометры бывают различных типов и размеров в зависимости от того, для измерения больших или малых сил они предназначены. Для измерения мускульной силы руки используют динамометр-силомер (рис. 147, а). Определить силу тяги трактора позволяет тяговый динамометр (рис. 147, б).

Для проведения различных исследований удобен динамометр с реечной передачей (рис. 148). Он позволяет измерять не только силу, направленную вниз, например создаваемую лежащим на опоре А телом (рис. 148, а), или вес подвешенного к подвесу Б тела. Таким динамометром можно измерить и силу, направленную вверх (рис. 148, б).

Рассмотрим пример решение задачи из учебника на странице 90:

Ответьте устно на вопросы:

В каких единицах в СИ измеряется сила?

Какие свойства силы используются для ее измерения?

Какой массой должно обладать тело, чтобы Земля притягивала его с силой F =1 Н?

С какой силой вас притягивает Земля?

Можно ли измерить вес тела с помощью пружинного динамометра, находясь на орбите в космическом корабле?

Итак, подведем итоги:

В СИ единицей силы является1 ньютон.

Силу измеряют с помощью динамометра.

С силой F =1 Н Земля притягивает тело массой m =0,102 кг.

В формуле Fт = gm силы тяжести, с которой Земля действует на тело, постоянный коэффициент g≈9,8 Н/кг.

Организация домашнего задания

§25,ответить на контрольные вопросы, упр.9 №2,3.

Сегодня на уроке я узнал…

Знания, которые я получил на уроке, пригодятся…

Источник:
http://infourok.ru/edinici-sili-izmerenie-sili-dinamometr-2746357.html

Ветер — это горизонтальное перемещение, поток воздуха параллельно земной поверхности, возникающее в результате неравномерного распределения тепла и атмосферного давления и направленное из зоны высокого давления в зону низкого давления

Ветер — характеризуется скоростью и направлением.

Скорость ветра измеряется в метрах в секунду и километрах в час.

Еще ветер характеризуют его силой, то есть давлением, оказываемым им на единицу поверхности, которую, мы рассчитаем с помощью измеренных величин скорости ветра.

В данной работе предстоит ознакомиться с проблемами измерения скорости ветра и ее преобразование в силу. Описать существующие технические средства её измерения.

Даная ИИС будет разрабатываться для мониторинга силы ветра.

Пределы измерения по скорости от 0 до 15мс.

Методы измерения силы

Сила — это всякое воздействие на данное тело, сообщающее ему ускорение или вызывающее его деформацию. Сила — это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел.

Сила характеризуется числовым значением, направлением в пространстве и точкой приложения.

За единицу силы в СИ принят ньютон (Н). Ньютон — это сила, которая придает массе 1 кг в направлении действия этой силы ускорение 1 м/с2.

В технических измерениях допускаются единицы силы:

· 1 кгс (килограмм-сила) = 9,81 Н;

· 1 тc (тонна-сила) = 9,81 х 103 Н.

Силу измеряют посредством динамометров, силоизмерительных машин и прессов, а также нагружением при помощи грузов и гирь.

Сила инерции — фиктивная сила, вводимая в неинерциальных системах отсчёта.

Сила упругости — сила упругого сопротивления тела внешней нагрузке.

Сила трения — сила сопротивления относительному перемещению контактирующих поверхностей тел.

Сила сопротивления среды — сила, возникающая при движении твёрдого тела в жидкой или газообразной среде..

Сила нормальной реакции опоры — упругая сила, действующая со стороны опоры и противодействующая внешней нагрузке.

Силы поверхностного натяжения — силы, возникающие на поверхности фазового раздела. Силы Ван-дер-Ваальса — электромагнитные межмолекулярные силы, возникающие при поляризации молекул и образовании диполей.

Приборы для измерения силы

Силу измеряют посредством динамометров, гравиметров и прессов.

Динамоммемтр — прибор для измерения силы или момента силы, состоит из силового звена (упругого элемента) и отсчетного устройства.

Гравиметр — прибор для измерения ускорения силы тяжести. Различают два способа измерения силы тяжести: абсолютный и относительный.

Гидравлический пресс — это простейшая гидравлическая машина , предназначенная для создания больших сжимающих усилий .

Анемометр (от греческого анемос — ветер, и метрео — измерение) — измерительный прибор, предназначенный для определения скорости ветра, а также для измерения скорости направленных воздушных и газовых потоков.

Анемометр, как измерительный прибор, состоит из трех основных частей:

§ Приемное устройство (чувствительный элемент анемометра, первичный преобразователь анемометра);

§ Вторичный преобразователь (механический, пневматический или электронный блок анемометра);

§ Отсчетное устройство (указатель стрелки, шкала, индикатор, дисплей анемометра).

По принципу действия чувствительных элементов анемометры подразделяются на группы:

§ Заторможенные или динамометрические анемометры (трубки Пито — Прандтля);

§ Вращающиеся анемометры (чашечные, винтовые, крыльчатые анемометры);

§ Тепловые анемометры (термоанемометры);

§ Ультразвуковые анемометры (акустические анемометры);

§ Оптические анемометры (лазерные, доплеровские анемометры).

Скорость воздуха является весьма важным параметром состояния атмосферы и одной из главных характеристик воздушного потока, которую необходимо учитывать при проектировании, монтаже, наладке и контроле систем вентиляции и кондиционирования. В качестве основного средства измерения скорости движения воздуха применяются анемометры, различающиеся между собой как по принципу действия, так и по техническим характеристикам.

В настоящее время промышленность предлагает широкий выбор переносных и стационарных электронных анемометров всевозможных марок и модификаций как отечественных, так и зарубежных фирм-изготовителей. При чем все анемометры отечественного производства и многие анемометры зарубежного производства внесены в Государственный реестр средств измерений России.

При выборе анемометра для решения конкретных практических задач по измерению скорости воздуха необходимо учитывать множество факторов, таких как диапазон измерений анемометра, погрешность измерения скорости воздушного потока, диапазон рабочих температур, степень защиты анемометра от воздействия агрессивных факторов окружающей среды и уровень взрывозащиты, влагозащищенность и водонепроницаемость анемометра, габаритные размеры, как самого прибора, так и чувствительного элемента анемометра и т.д.

Производство анемометров в современных условиях базируется на передовых технологиях и последних научных достижениях и разработках в области приборостроения, аэрологии, микроэлектроники, физики, химии и многих других областей знания. В новейших моделях анемометров для определения скорости воздушного потока производители применяют новые типы высокоточных датчиков и чувствительных элементов. Кроме этого, разработчики часто оснащают анемометры дополнительными функциями, позволяющими кроме определения скорости воздуха измерять объемный расход, температуру, направление воздушного потока, относительную и абсолютную влажность, освещенность, содержание вредных примесей и некоторые другие параметры, например, некоторые анемометры имеют в своем арсенале даже электронный компас. Большие многофункциональные и высококонтрастные жидкокристаллические дисплеи таких анемометров изготовители снабжают подсветкой, что позволяет производить измерение скорости воздушного потока и других параметров микроклимата в условиях недостаточной освещенности.

Рис 1. Анемометр лопастный, электронный с ЖК дисплеем.

Возросшие объемы измерения скорости воздушного потока и расхода воздуха диктуют необходимость оснащения анемометров большим объемом встроенной памяти. Немаловажное значение при этом приобретает и возможность подключения анемометра к персональному компьютеру, а также наличие в комплекте поставки анемометра специального программного обеспечения, предназначенного для проведения статистической обработки результатов измерений с применением новейших научно-обоснованных методик расчета. Использование такого программно-аппаратного комплекса для измерения скорости воздушного потока существенно облегчает регистрацию и ввод измерительных данных, повышая точность и достоверность анализа больших массивов информации и оказывая положительное влияние на качество выполненных работ и общее увеличение производительности труда.

С ростом требований, предъявляемых к измерительной технике, производители анемометров постоянно работают над повышением качества измерительных приборов, используя в производстве анемометров высококачественные электронные компоненты, комплектующие, сырье и материалы. Как правило, хороший анемометр наряду с прекрасными техническими характеристиками отличают богатая комплектация, детально продуманная эргономика и профессиональный дизайн.

Анемометры, предлагаемые многими разработчиками и изготовителями современных средств измерений, существенно различаются как по назначению, конструктивным и функциональным особенностям приборов, так и по ценам. При этом в условиях рыночной экономики цена анемометра не является объективным показателем качества измерительного прибора. При сравнении модельного ряда анемометров с целью рационального выбора и покупки конкретной модели измерительного прибора правильнее руководствоваться таким интегральным показателем, как соотношение цена-качество анемометра. Данный показатель позволяет всесторонне и наиболее полно оценить технические характеристики и функциональные возможности анемометра с точки зрения оптимального вложения денежных средств и затрат на покупку, транспортировку, хранение, ремонт, техническое и метрологическое обслуживание анемометра.

Так, например, из всех анемометров, представленных на российском рынке, самый низкий показатель качество-цена имеет анемометр АПР-2 (производство — ИГТМ НАНУ, Украина, Днепропетровск, продажа — ООО НПФ «Экотехинвест», Россия, Москва, цена анемометра АПР-2 — 1300 $).

Читайте также  Как делать вазы и подсвечники из глины

Анемометры находят широкое применение для измерения средней скорости воздуха в системах вентиляции и кондиционирования (воздуховодах, каналах, коробах) промышленных и гражданских зданий, тоннелях метрополитенов, выработках шахт и рудников, для укомплектования лабораторий по охране труда при аттестации рабочих мест, а также для измерения средней скорости ветра при метеорологических наблюдениях.

Источник:
http://studbooks.net/2351713/tehnika/metody_izmereniya_sily

ОПИСАНИЕ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ СИЛЫ

3. ОПИСАНИЕ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ СИЛЫ

Рисунок 1 — Гравиметр

Согласно общепринятому определению, Гравиметр (от лат. gravis — тяжелый и . метр), прибор для относительного измерения ускорения силы тяжести. Большинство гравиметров представляет собой точные пружинные или крутильные весы. С помощью таких гравиметров измеряют разности ускорении силы тяжести по изменению деформации пружины или угла закручивания упругой нити, компенсирующих силу тяжести небольшого грузика. Измерения проводятся последовательно на исходном пункте, для которого ускорение силы тяжести известно, и на исследуемом пункте. Основная трудность в создании гравиметра состоит в необходимости обеспечить точное измерение малых упругих деформации в полевых условиях. Применяются оптические, фотоэлектрические, емкостные, индукционные и другие способы их регистрации. Применяются гравиметры основанные на измерениях изменения частоты колебаний струны, к нижнему концу которой подвешивается масса, или изменения скорости прецессии гироскопических приборов вследствие различных значении силы тяжести на гравиметрических пунктах.

Рисунок 2 – Динамометр

Согласно общепринятому определению, Динамометр (от динамо. и . метр), прибор для измерения силы или момента, состоит из силового звена (упругого элемента) и отсчётного устройства. В силовом звене динамометра измеряемое усилие преобразуется в деформацию, которая непосредственно или через передачу сообщается отсчётному устройству. Динамометром можно измерять усилия от нескольких н (долей кгс) до 1 Мн (100 тс). По принципу действия различают динамометры механические (пружинные или рычажные), гидравлические и электрические. Иногда в одном динамометре используют два принципа. По назначению динамометры разделяют на образцовые и рабочие (общего назначения и специальные). Образцовые динамометры. предназначены для поверки и градуировки рабочих динамометров и контроля усилий машин при испытании механических свойств различных материалов и изделий. По степени точности различают образцовые динамометры 1-го, 2-го и 3-го разрядов. Динамометры 1-го разряда предназначаются для поверки образцовых динамометров 2-го разряда, которые, в свою очередь, применяются для поверки и градуировки динамометров 3-го разряда и поверки динамометров общего назначения. Динамометры 3-го разряда служат для поверки и градуировки испытательных машин и приборов, изготовляются с упругими элементами в виде замкнутых скоб, работающих в основном на изгиб, и замкнутых скоб или стержней, испытывающих деформацию сжатия или растяжения.

3.3 Прибор для измерения силы сжатия

Прибор для измерения силы сжатия — измерительный прибор, предназначенный для измерения силы (см.сила) сжатия створок автоматически закрывающихся систем, таких как двери автобусов, трамваев, вагонов поездов, метро, а также двери пассажирских и грузовых лифтов, гаражные ворота, автомобильные окна, сдвигающиеся люки на крыше и т. п., которые могут, в случае неправильной юстировки, стать причиной травмирования людей. Для предотвращения подобных случаев, внедрены законодательные Предписания, которые устанавливают технические Нормы, определяющие границы сил сжатия в закрывающихся системах. Эти нормы приведены на странице[1]. Данные Нормы обязательны во всех странах Европейского союза, а также используються в США, Японии, Китае, Саудовской Аравии, Австралии и других странах мира. В России такие проверки осуществляются при эксплуатации нового железнодорожного экспресса InterCityExpress (ICE) Москва-Петербург (разработка фирмы Siemens AG и Bombardier), а также в петербургском филиале автобусной фирмы «Scania AB». Прибор состоит из сенсора-приемника механического давления и электронного блока для преобразования, обработки, оценки и сохранения измеряемых величин. В зависимости от области применения, диапазона сил и других требований норм, наиболее известны следующие типы приборов: BIA Kl.1 — система для измерения и оценки силы сжатия дверей автобусов, трамваев, метро и железнодорожных вагонов. Диапазон измеряемых сил: от 10 до 300 ньютон (пружинная константа — 10 N/mm (Ньютон/миллиметр)). С помощью этого прибора проводится измерение силы сжатия на соответствие стандартов: 2001/85/EG (для автобусных дверей), prEN 14752 (для дверей рельсовых транспортных средств),FM100 — система для измерения и оценки сил сжатия дверей и ворот. Диапазон измеряемых сил: от 2 до 2000 ньютон, (пружинная константа 500 N/mm). С помощью этой системы проводится измерение силы сжатия закрывающихся дверей и ворот на соответствие стандартам: EN 12453/12445. FM200 — система для измерения и оценки сил сжатия автоматически закрывающихся окон, верхних люков и багажников в автомобилях. Диапазон измеряемых сил: от 2 до 300 ньютон, (пружинная константа 10, 20, 65, 100 N/mm). С помощью данной системы проводится измерение силы сжатия автомобильных закрывающихся систем на соответствие стандартам: 2000/4/EG, FMVSS 118, 74/60 EWG. FM300 — система для измерения и оценки сил сжатия закрывающихся дверей пассажирских лифтов. Диапазон измеряемых сил: от 2 до 750 ньютон, (пружинная константа 25 N/mm). С помощью данной системы проводится измерение силы сжатия внешних и внутренних дверей пассажирских лифтов на соответствие стандартам:EN 81-1, EN 953. Эти системы, совместно с универсальным, компактным электронным блоком, обеспечивают измерение сил в статическом и динамическом режимах, с погрешностью не более +/- 3,0%. Сохраненные в электронном блоке результаты измерений, далее обрабатываются на компьютере с помощью специальной программы «Pinch Pilot».

Рисунок 3 — Амперметр

Амперме́тр — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений — с шунтом или через трансформатор. (Примером амперметра с трансформатором являются «токовые клещи»)

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Принцип действия магнитоэлектрического прибора основан на создании крутящего момента, благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки. С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки пропорционален силе тока.

Электродинамические амперметры состоят из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействия между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки. В электрическом контуре амперметр соединяется последовательно с нагрузкой, а при высоком напряжении или больших токах — через трансформатор.

История наук, нуждающихся в измерениях, показывает, что точность методов измерений и измерительных приборов и построения соответственных измерений и измерительных приборов постоянно возрастают. Результатом этого роста является новая формулировка законов природы.

Измерения и измерительные приборы – законы явлений природы, как выражения количественных отношений между факторами явлений, выводятся на основании измерений этих факторов. Приборы приспособленные к таким измерениям, называются измерительными. Всякое измерение, какой бы ни было сложности, сводится к измерениям и измерительным приборам пространственности, времени, движения и давления, для чего могут быть избраны единицы мер условные, но постоянные или же так называемые абсолютные.

Как бы старательно ни делались измерения и измерительные приборы при повторении их, в обстоятельствах опыта, по-видимому одинаковых, всегда замечаются нетождественные результаты. Сделанные наблюдения требуют математической обработки, иногда весьма сложной; только после этого можно пользоваться найденными величинами для тех или других выводов.

Цель изучения измерительных приборов состоит в том, чтобы будущий инженер получил необходимый минимум теоретических знаний о методах измерений, устройстве и принципе работы современных приборов и электронных устройств, используемых в современной электротехнике.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Авдеев Б.Я. и др. Основы метрологии и электрические измерения. Л., 1987. – 321с.

2. Атамалян Э.Г. и др. Приборы и методы измерения электрических величин. М., 1982 – 245с.

3. ГОСТ 15094-86 Средства измерений электронные. Наименования и обозначения.

4. Ландау, Л. Д., Лифшиц, Е. М. Механика. — Издание 5-е, стереотипное. — М.: Физматлит, 2004. — 224 с.

5. Малиновский В.Н. и др. Электрические измерения. М., 1985 – 323с.

Источник:
http://www.kazedu.kz/referat/160508/5

Единицы силы. Измерение силы. Динамометр

38 000 репетиторов из РФ и СНГ

Занятия онлайн и оффлайн

Более 90 дисциплин

План-конспект урока по теме «Единица силы. Измерение силы. Динамометр »

Тема: « Единица силы. Измерение силы. Динамометр »

Образовательная: усвоение определения основной единицы силы(1 ньютон), формирование понятия «динамометр»;

Развивающая: понимание устройства и принципа действия динамометра ; развивать познавательный интерес;

Воспитательная: прививать культуру умственного труда, аккуратность, учить видеть практическую пользу знаний, продолжить формирование коммуникативных умений, воспитывать внимательность, наблюдательность.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

Исаченкова, Л. А. Физика : учеб. для 7 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский ; под ред. А. А. Сокольского. Минск : Народная асвета, 2017.

Организационный момент (5 мин)

Актуализация опорных знаний (5мин)

Изучение нового материала (15 мин)

Физкультминутка (1 мин)

Закрепление знаний (14 мин)

Итоги урока (5 мин)

Организационный момент (проверка присутствующих в классе, проверка выполнения домашнего задания , озвучивание темы и основных целей урока )

Читайте также  Какое масло выбрать для воздушного поршневого компрессора: виды и критерии выбора

Актуализация опорных знаний

Сила характеризуется числовым значением(модулем), направлением и точкой приложения. Чтобы определить числовое значение силы, нужно измерить силу, т. е. сравнить ее с другой силой, принятой в качестве единицы силы. Что принято за единицу силы?

Изучение нового материала

Главный результат действия силы — изменение скорости движения тела, которая сама по себе никогда не изменяется. Исходя из этого, была выбрана в СИ единица силы — 1 ньютон (1 Н), названная в честь английского ученого Исаака Ньютона. Существуют кратные и дольные единицы силы: 1 кН = 1000 Н, 1 мН = 0,001 Н.

Сила, как вы знаете, может не только изменить скорость, но и вызвать деформацию тела. Пружина растягивается (рис. 143), потому что на нее действует вес груза, который притягивает Земля.

Какой массой должно обладать тело, чтобы действующая на него сила тяжести равнялась 1,0 Н? Исследования показали, что с силой F = 1,0 Н

Земля притягивает тело массой т = 0,102 кг. Определим значение коэффициента g , входящего в формулу силы тяжести F = gm . Из формулы видно, что g = . Так как на тело массой 0,102 кг .

Земля действует с силой F = 1,0 Н, то:

Значит, если масса тела равна 1,0 кг, то действующая на него сила тяжести F = gm = 9,8 Н. Следовательно, и вес этого тела (если оно находится в состоянии покоя или движется равномерно) Р = 9,8 Н. Ни в коем случае нельзя приравнивать вес и массу, что, к сожалению, часто встречается в быту. Это разные физические величины, и единицы у них разные. Масса измеряется в килограммах, вес — в ньютонах (рис. 144).

Если ваша масса m = 50 кг, то ваш вес Р = 500 Н.

Как измерить силу? Для этого нужно создать измерительный прибор. Будем подвешивать к пружине сначала одну гирю массой т = 102 г = 0,102 кг, затем две, три и т. д. Отметим метками положения указателя (рис. 145), напротив которых ставим значения 1 Н, 2 Н, 3 Н и т. д.

Пружина с указателем и шкалой представляет собой прибор для измерения сил — динамометр (от греч. dynamis — сила и metreo — измеряю) (рис. 146). Динамометром можно измерять не только вес тела, но и любые силы.

Динамометры бывают различных типов и размеров в зависимости от того, для измерения больших или малых сил они предназначены. Для измерения мускульной силы руки используют динамометр-силомер (рис. 147, а). Определить силу тяги трактора позволяет тяговый динамометр (рис. 147, б).

Для проведения различных исследований удобен динамометр с реечной передачей (рис. 148). Он позволяет измерять не только силу, направленную вниз, например создаваемую лежащим на опоре А телом (рис. 148, а), или вес подвешенного к подвесу Б тела. Таким динамометром можно измерить и силу, направленную вверх (рис. 148, б).

Рассмотрим пример решение задачи из учебника на странице 90:

Ответьте устно на вопросы:

В каких единицах в СИ измеряется сила?

Какие свойства силы используются для ее измерения?

Какой массой должно обладать тело, чтобы Земля притягивала его с силой F =1 Н?

С какой силой вас притягивает Земля?

Можно ли измерить вес тела с помощью пружинного динамометра, находясь на орбите в космическом корабле?

Итак, подведем итоги:

В СИ единицей силы является1 ньютон.

Силу измеряют с помощью динамометра.

С силой F =1 Н Земля притягивает тело массой m =0,102 кг.

В формуле Fт = gm силы тяжести, с которой Земля действует на тело, постоянный коэффициент g≈9,8 Н/кг.

Организация домашнего задания

§25,ответить на контрольные вопросы, упр.9 №2,3.

Сегодня на уроке я узнал…

Знания, которые я получил на уроке, пригодятся…

Источник:
http://infourok.ru/edinici-sili-izmerenie-sili-dinamometr-2746357.html

Прибор для измерения силы

Среди многих видов измерений необходимо измерять силу удара, тяги, вращения и другие. Прибор для этого называется динамометр. Само это слово произошло от двух древнегреческих слов: δύναμις – «динамо (сила)» и μέτρεω – «метрио (измеряю)».

Измерения силы в системе СИ

Единица силы в этой системе – ньютон. Название эта единица получила в честь английского физика Исаака Ньютона. Один ньютон (1 Н) – это такая сила, которая придаёт телу весом 1 кг ускорение 1 метр в секунду и равна 102 граммам. На табло динамометров обычно вместо ньютонов указываются килограммы.

Принцип действия и история изобретения динамометра

Принцип действия прибора основан на законе физики, который называется закон Гука, открытый в 1660 году. Он гласит, что деформация пружины прямо пропорциональна силе, действующей на неё.

Первые аппараты для измерения силы появились в XVIII веке. Это весы. В XIX появились приборы с пружиной, растягивающейся под действием приложенного усилия. Позже было изобретено устройство со спиральной пружиной. Эти приборы работали на растяжение. Позже были изобретены устройства, реагирующие на сжатие.

Виды приборов

Есть разные виды устройств, осуществляющих измерение силы. Они отличаются:

  • по предельному усилию – от долей ньютона (нескольких грамм) до десятков меганьютонов (тысяч тонн);
  • по типу измеряемой нагрузки: тяговые, измеряющие силу, и вращательные, предназначенные для измерения вращающего момента;
  • по принципу действия: механические, электрические и гидравлические.

В некоторых приборах применяются сразу несколько типов датчиков, дополняющих друг друга.

Механические (рычажные или пружинные) динамометры

Это самые простые и дешёвые устройства. Точность их зависит от температуры окружающей среды.

В устройстве рычажного типа вместо пружины используется рычаг, деформация которого передаётся на табло. Пример такого устройства –автомобильный динамометрический ключ.

В пружинных приборах усилие передаётся на пружину, которая сжимается или растягивается. Это зависит от направления приложенной силы и конструкции устройства. В свою очередь, пружина передаёт сигнал на датчик и (или) табло, цифровое или стрелочное.

Самым известным прибором такого типа является базарный безмен.

Гидравлический динамометр

Принцип действия устройства гидравлического типа основан на измерении количества жидкости, вытесненной из цилиндров.

Приборы такого типа точнее, но дороже и менее надёжны.

Электрический динамометр

Состоит из датчика, который при деформации выдаёт сигнал, усилителя этого сигнала и табло. Приёмником сигнала является упругий элемент – пружина, рычаг или мембрана, передающие усилие на датчик. От типа используемого датчика виды электрических динамометров получили своё название:

  • Индуктивные. Действующим элементом этих датчиков является катушка, индуктивное сопротивление которой изменяется при попадании в активную зону металлического, магнитного или других материалов, а также изменении положения сердечника катушки. Эти датчики получили большое распространение из-за простоты и надёжности в работе;
  • Емкостный датчик. Представляет собой конденсатор из двух пластин с воздушным зазором между ними. Под воздействием давления зазор меняется, что приводит к изменению ёмкости конденсатора;
  • Пьезоэлектрические. Пьезоэлектрический эффект (от греческого πιέζω «пьезо – давлю, сжимаю)» – это появление поляризованного сигнала на диэлектрике при давлении на него. Один из вариантов использования этого эффекта – микрофон;
  • Вибрационно-частотные. Внутри этих датчиков находится струна, частота колебаний которой изменяется при изменении натяжения. Так меняется звук струны на гитаре при настройке. Кроме струны, внутри устройства находятся возбудитель, вызывающий колебания, а также приёмник, улавливающий частоту. Преимуществом является высокая точность, не зависящая от длины проводов;
  • Тензорезисторные. Название этих датчиков произошло от латинских слов tensus – напряжённый и resisto – сопротивляюсь. Действующим элементом этого датчика является полупроводниковый резистор. Сопротивление этого элемента меняется при деформации.

Ниже изображена схема включения тензорезисторного датчика.

Схема тензометрического датчика: 1 – упругое тяговое звено, 2 – рабочий тензорезистор, 3 – измерительный мост, 4 – усилитель, 5 – регистратор

Одноразовые датчики

Кроме динамометров, рассчитанных на длительную работу, есть приборы, предназначенные для однократного применения. Они разрушаются при использовании. Такие измерители применяются во многих сериях научно-популярного сериала «Разрушителей мифов» (MythBusters).

Применение динамометров

Приборы для измерения силы используются в самых разных областях жизни:

  • Измерение усилий сжатия створок закрывающихся дверей. В лифтах, метро, электропоездах и других местах применяются сдвигающиеся створки дверей. Усилие прижатия не должно превышать определённую величину, безопасную для людей, попавших между ними;
  • В спорте, а также реабилитационной медицине для измерения усилия сжатия кисти, плечевого пояса или поясницы. В боксе такие устройства измеряют силу удара;
  • В робототехнике и протезировании конечностей динамометры позволяют регулировать усилие сжатия искусственной кисти. Это позволяет удержать штангу или не раздавить яйцо;
  • Элемент весов. Позволяют взвешивать вагоны поезда, автомобили целиком или давление, оказываемое одним колесом на дорогу;
  • При постройке плотин и больших зданий такие датчики устанавливаются внутри конструкций. Это позволяет контролировать внутренние напряжения и целостность сооружения;
  • При испытаниях автомобилей, тепловозов и других тяговых механизмов. Аналогичные приборы применяют для взвешивания грузов, подвешенных на крюке мостового или башенного крана.

Приборы для измерения силы получили широкое распространение в технике, медицине, спорте, а также других областях жизни. Благодаря разнообразию типов, можно найти устройство для выполнения измерений в любых условиях.

Источник:
http://elquanta.ru/instrument/pribor-dlya-izmereniya-sily.html