Как сделать овал с помощью циркуля

Как сделать овал с помощью циркуля

§ 14. Построение аксонометрических проекций окружности

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.


Рис. 92. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.


Рис. 93. Фронтальные диметрические проекции деталей

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием. Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.


Рис. 94. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.


Рис. 95. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) — на осях х и z (рис. 97, б).


Рис. 96. Построение овала в плоскости, перпендикулярной оси z


Рис. 97. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).


Рис. 98. Построение изометрической проекции летали с цилиндрическим отверстием

Ответьте на вопросы

1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию ?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42

На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба — верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?


Рис. 99. Задание для упражнений

Упражнение 43

Запишите, какой оси (х, у или z) перпендикулярны плоскости овала на рис. 100. В какой аксонометрической проекции даны здесь окружности?


Рис. 100. Задание для упражнений

Упражнение 44

В каких аксонометрических проекциях даны окружности на рис. 101? Какой оси перпендикулярна плоскость каждой из них?


Рис. 101. Задание для упражнений

Упражнение 45

Запишите, в каких аксонометрических проекциях даны геометрические тела на рис. 102.

Каким осям (х, у или z) параллельна высота каждого из них?


Рис. 102. Геометрические тела для задания для упраждений

Упражнение 46

Постройте изометрическую проекцию куба, сторона которого равна 70 мм. Впишите в три грани куба овалы — изометрические проекции окружностей (см. рис. 95).

Источник:
http://pedagogic.ru/books/item/f00/s00/z0000043/st016.shtml

Приемы построения эллипса

Эллипс может быть построен как лекальная и как циркульная кривая.

Лекальная кривая строится по точкам, которые затем плавно соединяются от руки или при помощи лекала (способ 1).

Циркульная кривая строится при помощи циркуля как кривая, состоящая из четырёх сопрягающихся дуг окружностей (способы 2, 3).

Рассмотрим построение эллипса в аксонометрической плоскости х’О’у’. Аналогичными будут построения в других плоскостях. Только необходимо учитывать ориентацию осей эллипса. Возьмём окружность произвольного радиуса и построим её прямоугольную изометрию и диметрию разными способами, заготовив предварительно треугольники пропорциональности (рис. 84).

Способ L Лекальная кривая. Строим аксонометрию по восьми точкам, которыми будут являться концы осей и сопряжённых диаметров.

В прямоугольной изометрии (рис. 85, а) приведённые коэффициенты искажения по всем осям равны 1. Поэтому на осях х’ и у’ от центра О‘ откладываем радиус 7? окружности, на оси г’ — малую полуось эллипса 0,717?, на прямой, перпендикулярной z’, — большую его полуось 1,22R.

Для определения размеров большой и малой полуосей эллипса откладываем на натуральной шкале (1:1) треугольника пропорциональности для изометрии радиус окружности R, и из точки А проецируем его на остальные шкалы. На верхней шкале получаем размер 1,227?, на нижней — 0,71 R.

В прямоугольной диметрии (рис. 85, 6) по осям х’ и z’ коэффициент искажения равен 7, по оси у-0,5. Поэтому на оси х’ откладываем радиус R. Остальные размеры определяем при помощи треугольника пропорциональности для диметрии. На натуральной шкале (1:1) откладываем радиус R и через точку А и конец этого отрезка проводим проецирующий луч. На шкале 0,5 получаем размер 0,57? для оси у на шкале 0,35 — размер 0,357? малой полуоси эллипса, который откладываем на z’. Размер 1,067? большой полуоси берём со шкалы 1,06 и откладываем его на прямой, перпендикулярной z’.

Читайте также  Как узнать какой интернет подключен: подробная инструкция

Полученные восемь точек в обоих случаях предпочтительнее соединить при помощи лекала.

Примечание. Размеры осей эллипса для прямоугольной изометрии можно определить и графически (рис. 86). Для этого из концов С и D взаимно перпендикулярных диаметров окружности проводим дуги радиусом CD до взаимного пересечения в точках А и В. Соединив точки А и В, получим большую ось эллипса, равную 1,22D, а отрезок CD будет его малой осью, равной 0,7 Ш.

Способ 2. Коробовая кривая. Коробовая кривая является циркульной кривой, состоящей из четырёх дуг окружностей (рис. 87). Ею можно заменить эллипс. Строится она по его осям.

На рис. 87 коробовая кривая построена в прямоугольной изометрии. Малая ось CD направлена вдоль аксонометрической оси z большая АВ ей перпендикулярна. Построение выполняем в определённой последовательности.

  • • Соединяем концы большой и малой полуосей (отрезок A Q.
  • • Находим разность большой и малой полуосей (отрезок СЕ). Для этого из центра О‘ радиусом О’А проводим дугу до пересечения с прямой, проходящей через CD, в точке Е.
  • • Откладываем СЕ от точки С на АС. Получаем точку F.
  • • Строим срединный перпендикуляр к отрезку AF и отмечаем точки пересечения его с прямыми линиями, проходящими через оси эллипса. и 02 — центры двух дуг окружностей.

На рис. 88 построена прямоугольная диметрия окружности в плоскости x’O’z’ в виде коробовой кривой. Малая ось CD направлена вдоль оси у’ и равна 0,95D. Большая ось АВ ±у’ и равна 1,060. Последовательность построения та же, что была рассмотрена выше для изометрии.

Этот метод является универсальным и может применяться не только для построения аксонометрии окружности, но и любого эллипса или овала, если известны размеры его большой и малой оси, чем широко пользуются при конструировании технических деталей.

Способ 3. Овал. Построим прямоугольную изометрию окружности в плоскости х’О’у’, заменяя эллипс овалом (рис. 89)

Задаём аксонометрические оси х’, у’, z’ и направление большой оси эллипса (перпендикулярно z’). Из центра эллипса проводим окружность радиусом, равным радиусу той окружности, аксонометрию которой строим. На пересечении этой окружности с направлением малой оси эллипса (осью z’) получаем два центра дуг и 02. Проводим прямые через и точки Е, L (или через 2 и точки К, F) пересечения окружности с осями х’, у’. На пересечении их с направлением большой оси получаем ещё два центра — 03 и 04. Затем последовательно проводим из центра дугу EL радиусом 0Е, из центра 04 — дугу LF радиусом Оф?, из 02 — дугу FK радиусом 2F, из 03 — дугу КЕ радиусом 2К. Построенный овал неточно повторяет форму эллипса. У них имеются небольшие расхождения в размерах. Таким приёмом можно построить овал только в прямоугольной изометрии.

На рис. 90 показано построение овала, заменяющего эллипс в прямоугольной диметрии. Овал строится по осям и пригоден только для эллипсов, у которых малая ось в три раза меньше большой оси (в плоскостях х’О’у’иг’ОУ). Рассмотрим построение овала в плоскости х’О’у’.

Проводим две взаимно перпендикулярные прямые. Одну вертикально (параллельно z% другую горизонтально. Точка пересечения прямых будет центром О эллипса. Отрезки АВ и CD — соответственно большая и малая ось эллипса. По обе стороны от центра О на прямой, проходящей через малую ось CD, откладываем отрезки, равные длине большой оси АВ эллипса. Получаем центры и 02 двух дуг окружностей. Центры 03 и 04 двух других дуг окружностей удалены от концов А и В большой оси эллипса на расстояние 1/4CD. Соединяем попарно центры и между линиями центров проводим дуги: из радиусом Оф, из 04 радиусом О4В, из 2 радиусом 2С, из 03 радиусом 6М. Как следует из построений, радиусы сопрягающихся дуг равны R = АВ + 1/2CD, г = 1/4CZ).

Коробовая кривая и овал представляют собой кривые, приближенные к эллипсу. Существуют и другие способы построения эллипса.

Источник:
http://studref.com/509906/matematika_himiya_fizik/priemy_postroeniya_ellipsa

Как начертить или нарисовать овал

Как начертить или нарисовать овал?

Для художника умение красиво и правильно нарисовать овал чрезвычайно важно. Собираясь писать эту статью я сначала почитала в интернете что говорят про начертание овалов, чтобы не повторяться.

Кстати, не будем путать овал с эллипсом. Они похожи, да это не одно и то же. Эллипс мы с вами рассмотрим в теме «перспектива круга».

А вот про овал скажу так: способы начертания овала разнообразны и сложны. И ещё важно для какой именно цели нам нужно нарисовать овал.

Если для оформительских работ требуется шаблон овала, то я поступаю вот таким хитрым образом. Обвожу карандашом круглый предмет дважды и эти окружности от руки соединяю дугами.

Можно и с помощью циркуля, но всегда пользуюсь возможностью развивать свой глазомер.

Если рука верная как у индейца, то фигура получается вполне удовлетворительная.

Другое дело, если овал нужен для рисунка. Например, раскрасили раскраску «черепаха» и хотите нарисовать такую же по-образцу. Причём не с помощью кальки или перевода через оконное стекло, а так — просто начертить(нарисовать) красивый ровный овал.

Дети любого возраста склонны рисовать овал одним махом — криво и с наклоном вправо. А ведь начертание такой сложной фигуры — это серьёзное геометрическое построение.

Начертим вертикальную ось и перпендикулярно к ней — горизонтальную.

Если чертим по линейке — тогда проверяем угольником действительно ли углы прямые. Если же рисуем от руки, то надо поворачивать картинку, чтобы оценить с разных точек зрения. От точки пересечения осей отмеряем в обе стороны одинаковой длины отрезки по горизонтали- ширина овала и по вертикали — высота овала. Сначала не торопясь очень красиво чертим первую кривую линию ограничивающую один из четырёх секторов. Тут приходится полагаться на своё чувство гармонии. Следующую линию чертим симметрично, опять же внимательно следя за симметричностью и точностью размеров. Определившись с эскизом овала, стираем лишние линии и обводим нужную нам:

Тут, товарищи, немало подводных камней: обычно дети очень торопятся. Или, занятые вычерчиванием деталей, не видят целое. Как и в случае с квадратурой круга очень сильно искушение начертить либо ромб, либо прямоугольник со скруглёнными углами.

Так что снова повторяю: начертить или нарисовать овал не так-то и просто. Я считаю, что такую тему есть смысл изучать не раньше второго класса. Да. И методически нарабатывать навык выведения овала прежде чем браться за темы вроде «узор в овале» к Пасхе, или «Божья коровка» или «лицо человека». Впрочем, лицо человека – тема очень-очень сложная, честное слово лучше не браться раньше третьего класса. А штурмом осваивать «Портрет мамы» в детском саду – это может неоправданное опережение возможностей детей. Даже самая упрощённая картинка — канон строения лица человека выглядит вот так:

Представляете? До таких построений надо дорасти.

Своими советами как нарисовать овал и соображениями о том, в каком возрасте дети готовы к таким геометрическим построениям с вами поделилась Марина Новикова.

А что вы думаете по этому поводу? Напишите, пожалуйста, в комментариях. Ваше мнение мне важно и очень интересно.

Ещё по теме геометрических построений читайте:

Источник:
http://handykids.ru/kak-nachertit-ili-narisovat-oval/

Как сделать овал с помощью циркуля

  • Главная
  • Блог
  • Базовые уроки
  • Как рисовать правильные овалы

Как рисовать правильные овалы

«Ни каких рыбок и сосисок! Надо рисовать правильные овалы! «

Именно так говорил мой преподаватель — Сергей Иванович Полуйчик, когда смотрел наши первые натюрморты. Благодаря этой фразе, я сразу запомнила, как должны выглядеть правильные овалы при построении цилиндрических форм.

Читайте также  Как хранить свеклу

Итак, знакомимся с рыбками, сосисками, и правильными овалами.

РЫБКА — неправильный овал с острыми углами.

Овал — это круг, который лежит на плоскости, поэтому с какой бы стороны мы не смотрели, у него не может быть острых углов.

СОСИСКА — неправильно нарисованный овал с параллельными сторонами.

Еще раз чтобы запомнилось: овал — это круг на плоскости, у круга нет параллельных сторон.

ПРАВИЛЬНЫЙ ОВАЛ, без острых углов и параллельных сторон.

Соблюдая правила перспективы, дальняя часть овала рисуется меньше (красная линия), ближняя к зрителю — больше (синяя линия на рисунке).

Практически все цилиндрические и конусовидные формы (кувшины, крынки, вазы, бутыли, кружки и т.д.) рисуются по одинаковой схеме. Вот, на примере этого кувшинчика и разберем пошагово эту схему рисования цилиндрических тел.

Всё построение делается легкими, еле заметными линиями, чтобы не пришлось стирать резинкой, так как при стирании портится верхний слой бумаги. И краска в живописи, и штрихи в рисунке ложатся на бумагу после стирания неровно.

Определяем место предмета на листе. Проводим центральную осевую линию для построения кувшина.

Определяем место осевых линий для построения овалов. То есть — с помощью метода визирования, уточняем пропорции и размеры между центрами овалов у кувшина. Проводим эти линии.

С помощью визирования определяем размер овалов. Откладываем этот размер с помощью карандаша, отмечаем одинаковые отрезки от точки пересечения центровых линий.

Откладываем точки ширины овалов.

Отмечая эти размеры не забываем о правилах перспективы: та сторона овала, что дальше от нас — будет чуточку меньше, значит та, что ближе к нам — больше.

Точно также помним, чем ниже уровня глаз находится овал, тем сильнее ему хочется стать кругом.

Наконец-то прорисовываем овалы нашего цилиндрического предмета.

Соединяем крайние точки овалов и наш кувшин практически готов.

Осталось дорисовать ручку и носик. При рисовании ручки и носика, стараемся помнить, что обычно они находятся напротив друг друга, то есть на одной линии.

КАК РИСОВАТЬ ОВАЛЫ В ЗАВИСИМОСТИ ОТ УРОВНЯ ГЛАЗ ХУДОЖНИКА

Так будет выглядеть построение кувшина, если мы поставим его повыше, чем тот, построение которого мы разбирали.

Так будет выглядеть построение кувшина, если верхняя кромка кувшина будет находиться на уровне глаз, поэтому изображаем в виде линии. Но дно-то кувшина, ниже уровня глаз, поэтому, чтобы увидеть линию дна — строим для дна овал. рисуем кувшин выше уровня глаз

Так будет выглядеть построение кувшина, если его середина будет совпадать с линией глаз. Верхняя часть кувшина будет выше линии глаз — рисуем овал, у которого ближе к нам будет верхняя линия. Дно кувшина получается немного ниже уровня глаз, потому строим обычный овал. Но! Если кувшин (ваза) стоит далеко от зрителя (художника), то и верхний край и линия дна будут рисоваться простой прямой линией, как будто находятся на уровне глаз. Начинающие художники очень часто допускают ошибки именно при построении овалов, от чего портится впечатление от всей картины в целом.

Источник:
http://www.mogut-vse.ru/ludy/blog/bazovye-uroki/115-kak-risovat-pravilnye-ovaly

Как сделать овал с помощью циркуля

§ 14. Построение аксонометрических проекций окружности

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.


Рис. 92. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.


Рис. 93. Фронтальные диметрические проекции деталей

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием. Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.


Рис. 94. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.


Рис. 95. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) — на осях х и z (рис. 97, б).


Рис. 96. Построение овала в плоскости, перпендикулярной оси z


Рис. 97. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).


Рис. 98. Построение изометрической проекции летали с цилиндрическим отверстием

Ответьте на вопросы

1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию ?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

Читайте также  Вопрос-ответ про жироуловители «ТЕРМИТ»

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42

На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба — верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?


Рис. 99. Задание для упражнений

Упражнение 43

Запишите, какой оси (х, у или z) перпендикулярны плоскости овала на рис. 100. В какой аксонометрической проекции даны здесь окружности?


Рис. 100. Задание для упражнений

Упражнение 44

В каких аксонометрических проекциях даны окружности на рис. 101? Какой оси перпендикулярна плоскость каждой из них?


Рис. 101. Задание для упражнений

Упражнение 45

Запишите, в каких аксонометрических проекциях даны геометрические тела на рис. 102.

Каким осям (х, у или z) параллельна высота каждого из них?


Рис. 102. Геометрические тела для задания для упраждений

Упражнение 46

Постройте изометрическую проекцию куба, сторона которого равна 70 мм. Впишите в три грани куба овалы — изометрические проекции окружностей (см. рис. 95).

Источник:
http://pedagogic.ru/books/item/f00/s00/z0000043/st016.shtml

Приемы построения эллипса

Эллипс может быть построен как лекальная и как циркульная кривая.

Лекальная кривая строится по точкам, которые затем плавно соединяются от руки или при помощи лекала (способ 1).

Циркульная кривая строится при помощи циркуля как кривая, состоящая из четырёх сопрягающихся дуг окружностей (способы 2, 3).

Рассмотрим построение эллипса в аксонометрической плоскости х’О’у’. Аналогичными будут построения в других плоскостях. Только необходимо учитывать ориентацию осей эллипса. Возьмём окружность произвольного радиуса и построим её прямоугольную изометрию и диметрию разными способами, заготовив предварительно треугольники пропорциональности (рис. 84).

Способ L Лекальная кривая. Строим аксонометрию по восьми точкам, которыми будут являться концы осей и сопряжённых диаметров.

В прямоугольной изометрии (рис. 85, а) приведённые коэффициенты искажения по всем осям равны 1. Поэтому на осях х’ и у’ от центра О‘ откладываем радиус 7? окружности, на оси г’ — малую полуось эллипса 0,717?, на прямой, перпендикулярной z’, — большую его полуось 1,22R.

Для определения размеров большой и малой полуосей эллипса откладываем на натуральной шкале (1:1) треугольника пропорциональности для изометрии радиус окружности R, и из точки А проецируем его на остальные шкалы. На верхней шкале получаем размер 1,227?, на нижней — 0,71 R.

В прямоугольной диметрии (рис. 85, 6) по осям х’ и z’ коэффициент искажения равен 7, по оси у-0,5. Поэтому на оси х’ откладываем радиус R. Остальные размеры определяем при помощи треугольника пропорциональности для диметрии. На натуральной шкале (1:1) откладываем радиус R и через точку А и конец этого отрезка проводим проецирующий луч. На шкале 0,5 получаем размер 0,57? для оси у на шкале 0,35 — размер 0,357? малой полуоси эллипса, который откладываем на z’. Размер 1,067? большой полуоси берём со шкалы 1,06 и откладываем его на прямой, перпендикулярной z’.

Полученные восемь точек в обоих случаях предпочтительнее соединить при помощи лекала.

Примечание. Размеры осей эллипса для прямоугольной изометрии можно определить и графически (рис. 86). Для этого из концов С и D взаимно перпендикулярных диаметров окружности проводим дуги радиусом CD до взаимного пересечения в точках А и В. Соединив точки А и В, получим большую ось эллипса, равную 1,22D, а отрезок CD будет его малой осью, равной 0,7 Ш.

Способ 2. Коробовая кривая. Коробовая кривая является циркульной кривой, состоящей из четырёх дуг окружностей (рис. 87). Ею можно заменить эллипс. Строится она по его осям.

На рис. 87 коробовая кривая построена в прямоугольной изометрии. Малая ось CD направлена вдоль аксонометрической оси z большая АВ ей перпендикулярна. Построение выполняем в определённой последовательности.

  • • Соединяем концы большой и малой полуосей (отрезок A Q.
  • • Находим разность большой и малой полуосей (отрезок СЕ). Для этого из центра О‘ радиусом О’А проводим дугу до пересечения с прямой, проходящей через CD, в точке Е.
  • • Откладываем СЕ от точки С на АС. Получаем точку F.
  • • Строим срединный перпендикуляр к отрезку AF и отмечаем точки пересечения его с прямыми линиями, проходящими через оси эллипса. и 02 — центры двух дуг окружностей.

На рис. 88 построена прямоугольная диметрия окружности в плоскости x’O’z’ в виде коробовой кривой. Малая ось CD направлена вдоль оси у’ и равна 0,95D. Большая ось АВ ±у’ и равна 1,060. Последовательность построения та же, что была рассмотрена выше для изометрии.

Этот метод является универсальным и может применяться не только для построения аксонометрии окружности, но и любого эллипса или овала, если известны размеры его большой и малой оси, чем широко пользуются при конструировании технических деталей.

Способ 3. Овал. Построим прямоугольную изометрию окружности в плоскости х’О’у’, заменяя эллипс овалом (рис. 89)

Задаём аксонометрические оси х’, у’, z’ и направление большой оси эллипса (перпендикулярно z’). Из центра эллипса проводим окружность радиусом, равным радиусу той окружности, аксонометрию которой строим. На пересечении этой окружности с направлением малой оси эллипса (осью z’) получаем два центра дуг и 02. Проводим прямые через и точки Е, L (или через 2 и точки К, F) пересечения окружности с осями х’, у’. На пересечении их с направлением большой оси получаем ещё два центра — 03 и 04. Затем последовательно проводим из центра дугу EL радиусом 0Е, из центра 04 — дугу LF радиусом Оф?, из 02 — дугу FK радиусом 2F, из 03 — дугу КЕ радиусом 2К. Построенный овал неточно повторяет форму эллипса. У них имеются небольшие расхождения в размерах. Таким приёмом можно построить овал только в прямоугольной изометрии.

На рис. 90 показано построение овала, заменяющего эллипс в прямоугольной диметрии. Овал строится по осям и пригоден только для эллипсов, у которых малая ось в три раза меньше большой оси (в плоскостях х’О’у’иг’ОУ). Рассмотрим построение овала в плоскости х’О’у’.

Проводим две взаимно перпендикулярные прямые. Одну вертикально (параллельно z% другую горизонтально. Точка пересечения прямых будет центром О эллипса. Отрезки АВ и CD — соответственно большая и малая ось эллипса. По обе стороны от центра О на прямой, проходящей через малую ось CD, откладываем отрезки, равные длине большой оси АВ эллипса. Получаем центры и 02 двух дуг окружностей. Центры 03 и 04 двух других дуг окружностей удалены от концов А и В большой оси эллипса на расстояние 1/4CD. Соединяем попарно центры и между линиями центров проводим дуги: из радиусом Оф, из 04 радиусом О4В, из 2 радиусом 2С, из 03 радиусом 6М. Как следует из построений, радиусы сопрягающихся дуг равны R = АВ + 1/2CD, г = 1/4CZ).

Коробовая кривая и овал представляют собой кривые, приближенные к эллипсу. Существуют и другие способы построения эллипса.

Источник:
http://studref.com/509906/matematika_himiya_fizik/priemy_postroeniya_ellipsa