Как рассчитать коэффициент трансформации

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки — на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь — подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

Наилучший метод — измерение соотношений напряжений между вторичной и первичной обмотками с применением высокоточных вольтметров (класса точности максимум 0,5). Еще лучше, если есть возможность, применять специальный прибор типа «коэффициент-3» — универсальный измеритель коэффициента трансформации, который не потребует присоединения к трансформатору дополнительных источников сетевого напряжения.

Для анализа трансформаторов тока, для расчета его коэффициента трансформации, собирают цепь, где ток величиной от 20 до 100 % номинала пропускают по первичной обмотке трансформатора, при этом измеряется и вторичный ток.

Так и находят коэффициент трансформации трансформатора тока опытным путем: численную величину заданного первичного тока I1 делят на значение измеренного тока во вторичной обмотке I2. Это и будет коэффициент трансформации трансформатора тока. Найденное значение сравнивают с паспортным, если паспорт имеется.

Трансформатор тока с несколькими вторичными обмотками может быть опасен. Прежде чем начинать измерения, все вторичные обмотки трансформатора тока закорачивают, иначе в них может навестись ЭДС, измеряемая киловольтами, что опасно для жизни человека и для оборудования. Большинство трансформаторов тока требуют заземления магнитопровода, для этого на их корпусах есть специальная клемма, обозначенная буквой «З» — заземление.

Источник:
http://electricalschool.info/spravochnik/maschiny/1903-kak-rasschitat-kojefficient.html

Коэффициент трансформации

Коэффициент трансформации – показывает значение во сколько раз изменилась величина вторичного тока и напряжения. Также с его помощью можно определить какой трансформатор: понижающий или повышающий.

Для силового трансформатора

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформации

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Подробнее о трансформаторе тока(ТТ): Читать статью

Трансформатор напряжения

Формула для вычисления коэффициента трансформации ТН:

Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:

Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.

Подробнее о трансформаторе напряжения(ТН): Читать статью

Автотрансформатор

Формула для вычисления коэффициента трансформации у автотрансформатора:

Подробнее об автотрансформаторе(ЛАТР): Читать статью

Источник:
http://ofaze.ru/teoriya/koeffitsient-transformatsii

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки — на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Читайте также  Сварка велосипедных рам

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь — подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

Наилучший метод — измерение соотношений напряжений между вторичной и первичной обмотками с применением высокоточных вольтметров (класса точности максимум 0,5). Еще лучше, если есть возможность, применять специальный прибор типа «коэффициент-3» — универсальный измеритель коэффициента трансформации, который не потребует присоединения к трансформатору дополнительных источников сетевого напряжения.

Для анализа трансформаторов тока, для расчета его коэффициента трансформации, собирают цепь, где ток величиной от 20 до 100 % номинала пропускают по первичной обмотке трансформатора, при этом измеряется и вторичный ток.

Так и находят коэффициент трансформации трансформатора тока опытным путем: численную величину заданного первичного тока I1 делят на значение измеренного тока во вторичной обмотке I2. Это и будет коэффициент трансформации трансформатора тока. Найденное значение сравнивают с паспортным, если паспорт имеется.

Трансформатор тока с несколькими вторичными обмотками может быть опасен. Прежде чем начинать измерения, все вторичные обмотки трансформатора тока закорачивают, иначе в них может навестись ЭДС, измеряемая киловольтами, что опасно для жизни человека и для оборудования. Большинство трансформаторов тока требуют заземления магнитопровода, для этого на их корпусах есть специальная клемма, обозначенная буквой «З» — заземление.

Источник:
http://electricalschool.info/spravochnik/maschiny/1903-kak-rasschitat-kojefficient.html

Расчёт и выбор измерительных ТТ

11. Расчёт и выбор измерительных ТТ

11.1 Выбор измерительных трансформаторов тока, сечения жил кабелей. 3

11.1.1 Измерительные трансформаторы тока. 3

11.1.2. Методика выбора трансформаторов тока. 3

11.1.3. Расчёт коэффициента трансформации ТТ. 3

11.1.4. Проверка выбора коэффициента трансформации ТТ.. 4

11.2. Расчёт вторичной нагрузки ТТ. 4

Приложение 11.1. 7

11.1 Выбор измерительных трансформаторов тока, сечения жил кабелей

11.1.1 Измерительные трансформаторы тока

В проекте описан общий принцип выбора трансформаторов тока (ТТ) , приведены методики и алгоритмы расчёта параметров ТТ.

Трансформаторы тока, используемые для коммерческого учёта электроэнергии, должны быть включены в государственный реестр средств измерений, иметь действующее свидетельство (отметку в паспорте) о поверке СИ.

Трансформаторы тока выбирают по номинальному напряжению, первичному и вторичному токам, по типу установки, конструкции, классу точности.

Для присоединения расчётных счётчиков электроэнергии используются трансформаторы тока с классом точности не более 0,5S.

Установка ТТ осуществляется на присоединениях напряжением класса 0,4 кВ.

В качестве основных нормативных документов регламентирующих требования по размещению ТТ и их параметрам используется ПУЭ (Глава 1.5 «Учет электроэнергии»),

11.1.2. Методика выбора трансформаторов тока.

Выбор конструкции ТТ.

Учитывая конструктивные особенности сборок низкого напряжения, расположение токоведущих шин, необходимо использовать шинные трансформаторы тока типа ТШП-0,66, ТШ-0,66, и трансформаторы тока опорного типа ТОП-0,66, Т-0,66.

11.1.3. Расчёт коэффициента трансформации ТТ.

Коэффициент трансформации по каждой точке необходимо выбирать с учётом минимальных и максимальных первичных токов в режимные дни (летний минимум и зимний максимум) или данных о присоединённой мощности абонента, или уставок предохранителей или установленной мощности силового трансформатора (для организации технического учёта на лучах ТП). Максимальный первичный ток ТТ рассчитывается по формуле:

, А

Минимальный ток принимается равным 15% от максимального:

, А

Согласно ПУЭ (п. 1.5.17) допускается применение трансформаторов тока с завышенным коэффициентом трансформации, если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счётчика, а при минимальной рабочей нагрузке — не менее 5%. Выбор ТТ заключается в подборе ТТ с номинальным первичным током, удовлетворяющем условию:

11.1.4. Проверка выбора коэффициента трансформации ТТ

Выбранные коэффициенты ТТ проверяются на соответствие п. 1.5.17 ПУЭ. при применении электросчётчиков типа с Iном сч.=5 А, должны выполняться неравенства:

; .

Трансформаторы тока необходимо установить типа ТШП-0,66, или ТШ-0,66, с классом точности 0,5S, с номинальной вторичной нагрузкой 5 ВА.

Расчётные токи присоединений и выбранные коэффициенты трансформации приведены в Приложении 11.1. таблица 11.1.

11.2. Расчёт вторичной нагрузки ТТ.

Чтобы погрешность ТТ не превысила допустимую для данного класса точности, нагрузка вторичных обмоток измерительных трансформаторов в соответствии с ГОСТ 7746 должна удовлетворять следующим требованиям: «для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 ВА нижний предел вторичных нагрузок — 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 ВА соответственно». Для ТТ с номинальными вторичными нагрузками выше 10 Вт вторичная нагрузка должна быть не менее 25 % от номинальной и не должна превышать номинальную, задаваемую в каталогах.

В проекте предусмотрено использование трансформаторов тока типа ТШП -0,66 и Т-0,66. Класса точности ТТ — 0,5S, номинальная вторичная нагрузка — 5 ВА и номинальный вторичный ток 5 А. В соответствии с требованиями ГОСТ 7746 расчётное значение вторичной нагрузки ТТ должно находится в пределах: 3,75 ВА … 5 ВА (0,15 Ом…0,2 Ом).

Согласно ГОСТ 7746 номинальная вторичная нагрузка — полное сопротивление внешней вторичной цепи трансформатора тока, имеющей коэффициент мощности cos φ = 0,8, при котором гарантируются класс точности трансформатора тока.

Нагрузка трансформатора тока складывается из следующих элементов: сопротивления проводов, связывающих счётчик электрической энергии с трансформаторами тока; сопротивления приборов, включённых в цепь трансформатора тока; переходного сопротивления в контактных соединениях.

Внешняя нагрузка на трансформатор тока определяется с учетом схемы соединения трансформаторов тока, данных каталогов на счетчики и расчётных данных длины вторичных цепей ТТ приведённых в кабельном журнале.

При расчёте внешней нагрузки трансформатора тока для упрощения принимается, что все полные сопротивления имеют одинаковые углы, т. е. могут складываться арифметически. Указанное допущение приемлемо, поскольку вносимая этим ошибка обычно невелика и идет в сторону дополнительного запаса.

Вторичная нагрузка трансформаторов тока определяется по формуле,

, где

— переходное сопротивление в контактах принимается равным — 0,05 Ом;

— сопротивление проводов, Ом (в случае соединения трансформаторов тока звездой в испытательной клеммной коробке, сопротивление увеличить в 2- раза);

— сопротивление приборов, Ом

При выборе трансформаторов тока должно выполняться условие

,

где — номинальная допустимая нагрузка трансформатора тока в выбранном классе точности.

Сопротивление проводов для схемы включения счётчика и ТТ по схеме «звезды», определяют по формуле:

,

где — длина провода, м ;

— удельная проводимость, Ом/м;

— сечение провода или жилы кабеля;

Сопротивление счетчика, определяется из каталога на соответствующую аппаратуру непосредственно или пересчетом по имеющимся в каталоге данным о потребляемой мощности и токе по формуле,

,

где — мощность, ВА, потребляемая прибором при токе I, А.

Для рассматриваемых в проекте типов счетчиков мощность, потребляемая каждой токовой цепью, не превышает 0,1 ВА, следовательно, = 0,004 Ом.

Читайте также  Потеряете и деньги, и ребёнка

Расчёты нагрузки вторичных измерительных цепей трансформаторов тока приведены в Приложении 11.1., Таблица 11.2.

Приложение 11.1

Выбор коэффициента трансформации и проверка выбранного коэффициента трансформации ТТ на присоединениях в соответствии п. 1.5.17 ПУЭ. Данные по присоединённой мощности, разрешённой единовременной мощности, рабочих токах взяты на основании материалов предпроектного обследования объекта.

Источник:
http://pandia.ru/text/78/380/319.php

Выбор коэффициента трансформации измерительных трансформаторов тока 6-10 кВ

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием

220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5. Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Новые города на карте поставок

Мы поставляем оборудование во все регионы нашей огромной страны.

На нашей карте уже более сотни городов от Анадыря на востоке до Калининграда на западе, от Апатитов на севере до Махачкалы на юге.

C каждым годом расширяется география поставок. Растет объем поставок на экспорт — наше оборудование работает в Белоруссии, Казахстане, Киргизии и Узбекистане.

Чукотское лето

В связи с развитием Северного морского пути Чукотка в настоящее время переживает второе рождение. Восстанавливаются заброшенные поселки, активно развивается портовая инфраструктура на побережье.

В 2018 году мы поставили двухтрансформаторную подстанцию в рамках реконструкции районной больницы города-порта Певек.

В 2019 году было отгружено уже пять подстанций в различные районы Чукотского полуострова.

Одна киосковая подстанция отправилась в порт Провидения

Источник:
http://tmtrade.ru/vybor-transformatorov-toka

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Читайте также  Как зовут кота Кати адушкиной?

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник:
http://pomegerim.ru/electricheskie-apparaty/kak-vybrat-transformator-toka.php