Как человек использует плохую проводимость тепла воздухом

Как человек использует плохую проводимость тепла воздухом

Человек и животные в своей повседневной жизни используют различные свойства воздуха. Рассмотрим на примерах как использовать свойство воздуха — плохо проводить тепло.

Раньше окна делали из двух рам. Это для того, чтобы лучше сохранять тепло в доме. Между рамами находится воздух, который благодаря своей низкой плотности плохо проводит тепло, и если нет щелей, то такое окно сохраняет комфортную температуру в помещении.

Современные пластиковые окна аналогичны по конструкции. Стеклопакет состоит из нескольких стекол, между которыми находится слои воздуха, поэтому такое окно также хорошо удерживает тепло. Пластиковая рама содержит перегородки и состоит из нескольких воздушных камер, плохо проводящих тепло. Раньше чаще применялись рамы деревянные — дерево тоже плохой проводник тепла.

Когда мы надеваем пуховик или шерстяной свитер, нам становится тепло. Это происходит по той причине, что вещи удерживают вокруг нас теплый воздух, согретый нашим телом. Воздух снова плохо передает тепло в окружающее пространство.

Лучше всего данное свойство научились использовать животные и птицы.

Почему северные олени не замерзают даже в большой мороз? Что защищает их от холода? Оказывается, у оленя надувная шерсть, пустотелые шерстинки наполнены воздухом. Поскольку воздух плохо проводит тепло, то такая шерсть хорошо защищает оленя от холода.

Во время сильных морозов птицы нахохливаются. Почему при этом они легче переносят холод? Когда птицы нахохливаются, слой воздуха между перьями увеличивается и вследствие плохой теплопроводности задерживает отдачу тепла телом птицы в окружающее пространство.

Еще несколько интересных фактов из жизни птиц и животных.

В сильный мороз птицы чаще замерзают на лету, чем сидя на месте. Чем это можно объяснить? При полете оперение птицы сжато и содержит мало воздуха, а вследствие быстрого движения в холодном воздухе, происходит усиленная отдача тепла в окружающее пространство. Эта потеря тепла бывает настолько большой, что птица на лету замерзает.

Животные обитающие в холодном климате, имеют более густой волосяной покров, чем животные жарких стран. Более густой волосяной покров уменьшает отдачу тепла, что особенно важно в условиях крайнего севера.

Благодаря низкой плотность воздух обладает замечательным свойством: он плохо проводит тепло. Звери поднимают шерсть, птицы хохлятся, когда им холодно, а человек надевает теплый свитер все это только для того, чтобы окружить себя воздушной оболочкой, которая плохо проводит тепло. Свитер не дает телу потерять свое тепло. С той же целью в окна вставляют вторые рамы. Стекла сами по себе не защищают от холода, они лишь удерживают прослойку воздуха, который не пропускает теплый воздух из квартиры на улицу.

Свойство воздуха плохо проводить тепло можно подтвердить следующим опытом:

Наполним два стакана горячей водой и накроем их крышками. Один стакан поставим на стол, а другой на пустую спичечную коробочку, и сверху накроем этот стакан стеклянной банкой. Вскоре вода в первом стакане остынет. А вода под стеклянной банкой будет ещё тёплой. Это происходит потому, что воздух плохо проводит тепло.

Надеемся, что данная статья будет полезна школьникам 2 — 3 класса при подготовке домашнего задания по предмету окружающий мир.

Использованы материалы из книги: Физика в живой природе. В.М.Варикаш, Б.А. Кимбар, И.М.Варикаш. г Минск

Источник:
http://ucthat-v-skole.ru/entsiklopediya/pro-vozdukh/384-kak-ispolzovat-svojstvo-vozdukha-plokho-provodit-teplo

Как воздух проводит тепло? В каком случае воздух – хороший проводник, в каком – плохой?

Проводимость — это способность тела или материала пропускать тепло. При этом оно перемещается через твердый объект или из одного объекта в другой, потому что оба они находятся в контакте друг с другом. Это единственный способ прохождения тепла по всему телу. Возникает вопрос: «Как проводит тепло воздух и другие материалы?» Узнайте в статье!

Теплопроводность

Способность передавать тепло внутри объекта называется теплопроводностью. Это свойство обозначают буквой k, а измеряют в Вт/(м×K). Показатели теплопроводности варьируются для разных материалов. Так, золото, серебро и медь имеют высокую теплопроводность. К слову, эти материалы также являются хорошими проводниками электричества. А как воздух проводит тепло? Ответ краток: он является плохим проводником. Высокая проводимость золота, серебра и меди связана с тем, что электроны, которые отвечают за перенос заряда, также принимают участие в передаче тепловой энергии.

А вот такие материалы, как стекло и минеральная вата, имеют низкую теплопроводность. Объясняется это тем, что у них очень мало «свободных» электронов для переноса тепловой энергии внутри твердого тела. Материалы такого типа называют изоляторами. Скорость теплопередачи (то есть скорость движения тепловой энергии) напрямую зависит от теплопроводности, разности температур и площади контакта и материала, которыми обладает тело. По этой же причине нельзя утверждать, что воздух проводит тепло хорошо.

Если материал является хорошим проводником тепла, тогда оно быстро перемещается по телу. Металлы широко используются для целей теплопередачи, поскольку они обладают свойствами, которые позволяют распространять тепло, одновременно выдерживая экстремальные температуры, связанные с нагревом.

Именно электроны отвечают за передачу тепловой энергии, а также электрического заряда. Поэтому металлы являются хорошими проводниками тепла и электричества! Тут-то и скрывается ответ на вопрос: «Почему воздух плохо проводит тепло?»

Тем не менее не следует путать электрическую проводимость (которая связана с зарядом электронов), когда вы имеете в виду теплопроводность (которая связана с переносом энергии электронов).

Доказываем опытным путем

Попробуйте подержать один конец металлического стержня над пламенем – через несколько минут он нагреется.

Теперь подержите конец деревянной палочки в пламени, и этот конец станет настолько горячим, что он в конце концов вовсе загорится. Однако тот конец палочки, за который вы держитесь, останется относительно прохладным.

Тепло не распространяется по всему объему тела из-за его состава: его структура затрудняет передачу тепла электронами по материалу.

Так, повседневный опыт свидетельствует, что древесина не является хорошим проводником тепла. Если вам когда-нибудь приходилось видеть срез дерева под микроскопом, то вы наверняка заметили особенности структуры древесины: она состоит из отдельных ячеек, которые действуют как изоляторы, потому что они не взаимосвязаны. Клетки разбросаны, как камни в потоке. По такому материалу тепло двигается значительно медленнее, чем в металлах, где атомы связаны друг с другом в трехмерной «решетке».

Воздух плохо проводит тепло. Опыт повседневной жизни показывает: вспомните строение окон. Они всегда состоят из как минимум двух стекол, между которыми находится воздушная «подушка». Эта прослойка помогает сохранять тепло в помещении, не пропуская его наружу.

Итак, если тепловая энергия применяется непосредственно к одной части твердого объекта, электроны в объекте становятся возбужденными. Это приводит к колебаниям атомной решетки, которые проходят по объекту, повышая температуру при прохождении. Чем ближе звенья внутри твердого тела, тем быстрее происходит передача тепла.

Жидкости — плохие проводники тепла

Если вы закрепите кубик льда в нижней части пробирки с водой (вам нужно использовать вес, чтобы сделать это, иначе он будет плавать на поверхности, так как у льда меньшая плотность, чем у воды), а затем нагреете воду в верхней части трубки, вы обнаружите, что вода будет кипеть в верхней части трубки, а кубик льда останется замороженным.

Это связано с тем, что вода является плохим проводником тепла. Большая часть тепла будет двигаться в конвекционном токе внутри воды в верхней части пробирки, только небольшая часть ее будет опускаться до кубика льда.

Как воздух проводит тепло?

Воздух представляет собой набор газов. Хотя он отлично подходит для конвекции, количество тепла, которое он может передать, минимально, потому что малая масса вещества не может хранить большое количество тепла — именно поэтому его не считают хорошим проводником. Изоляционные свойства воздуха применяются человечеством в повседневной жизни. Так, они используются для изоляции кулеров, в стенах здания. Даже работа термоса построена на том, что воздух плохо проводит тепло. Примеров действительно множество!

Так чем же обусловлено это явление? Поскольку воздух неплотный, существует определенная масса, доступная для передачи тепловой энергии через проводимость. Поэтому он является плохим проводником, но отличным изолятором. Тем не менее ответ на вопрос: «Проводит ли воздух тепло?» — не столь однозначный. Так, рассмотрим следующие явления.

Радиация — это передача энергии через волны или возбужденные частицы. Воздух создает тепловой зазор, который не позволяет преодолеть тепловую энергию над ним. Тепло должно излучаться от поверхности к воздушным частицам, затем оно должно излучаться из воздуха на противоположную поверхность. Тепло очень медленно передвигается между тремя материалами, и большая часть передаваемой тепловой энергии поглощается в воздухе.

Конвекция представляет собой движение тепла через жидкость или газ из-за уменьшения плотности за счет поглощения тепла. В таком случае свойства воздуха становятся крайне полезными. Он также двигается вверх, передавая тепло из изолированного контейнера или пространства. Поэтому конвекция используется для удаления тепла и может применяться для охлаждения поверхности. Распределение тепла через конвекцию в воздухе несколько неэффективно, однако оно используется для многих целей охлаждения. Да, воздух плохо проводит тепло.

Примеры изоляции

Изоляция используется для многих целей. Некоторые из них включают охлаждение напитков и пищевых продуктов, создание воздушных зазоров в стенах, внедрение воздушных полостей в кухонные принадлежности. Особенности того, как воздух проводит тепло, применяются даже в изоляционной пене.

Проводимость — это прохождение тепла через твердое тело. От явления конвекции ее отличает то, что в процессе не происходит никакого движения материи. Теперь нам известно, хорошо ли воздух проводит тепло, а также чем это обусловлено.

Источник:
http://fb.ru/article/383028/kak-vozduh-provodit-teplo-v-kakom-sluchae-vozduh-horoshiy-provodnik-v-kakom-plohoy

Как человек использует свойства воздуха. Презентация.

38 000 репетиторов из РФ и СНГ

Занятия онлайн и оффлайн

Более 90 дисциплин

VI Международный дистанционный конкурс «Старт»

Идет приём заявок

  • 16 предметов
  • Для учеников 1-11 классов и дошкольников
  • Наградные и подарки

Описание презентации по отдельным слайдам:

Тема урока: Как человек использует свойства воздуха?

Это мы знаем: Воздух –это газообразное вещество. Он есть повсюду. Воздушная оболочка земли называется атмосферой. В воздухе есть кислород, углекислый газ, азот, водород. Все живые организмы дышат, используя кислород воздуха. Растения поглощают углекислый газ, который используют в фотосинтезе, и выделяют кислород.

Читайте также  Как сшить тренч своими руками

Свойства воздуха: прозрачен бесцветен не имеет запаха

Свойства воздуха: Воздух прозрачный, не имеет цвета, без вкуса. Можем мы увидеть воздух? – В некоторых случаях – да! Если взять стакан с водой и подуть через соломинку, можно увидеть пузырьки воздуха.

Воздух занимает весь предоставленный ему объем Вокруг нас в классе, на улице, дома всегда есть воздух; Если мы станем надувать шар, воздух заполнит все предоставленное пространство.

Воздух движется: Если мы помашем веером около лица, мы ощутим легкий ветерок; Движение воздуха в горизонтальном направлении называется ветер; Ветер возникает тогда, когда на место теплого воздуха поступает холодный воздух.

Использование человеком силы ветра

Использование человеком силы ветра в наши дни

Воздух сжимаем и упруг Если ударить мячом об пол, воздух в мячике сжимается. Но так как воздух упруг, он стремится расшириться, и мяч с силой отскакивает от пола.

воздух способен расширяться при нагревании Использование человеком способности воздуха расширяться при нагревании Первый воздушный шар был запущен братьями Монгольфье в 1783году. Первыми пассажирами воздушного шара стали: утка, петух и баран.

воздух способен расширяться при нагревании Использование человеком способности воздуха расширяться при нагревании Первый воздушный шар был запущен братьями Монгольфье в 1783году. Первыми пассажирами воздушного шара стали: утка, петух и баран.

Использование человеком способности воздуха расширяться при нагревании Управляемые летательные аппараты – дирижабли.

Теплый воздух поднимается кверху Это свойство воздуха можно увидеть и дома, когда теплый воздух из печной трубы поднимается вверх.

воздух имеет низкую плотность Использование человеком низкой плотности воздуха Первый самолёт с двигателем братьев Райт поднялся в воздух в 1903 году.

Использование человеком низкой плотности воздуха в наши дни

Воздух сохраняет тепло Почему звери к зиме надевают тёплые пушистые шубки? В пушистых шубках между ворсинками больше воздуха, который сохраняет тепло. Почему звери и птицы в сильный холод прячутся в снег? Хоть снег и холодный, но между снежинками есть воздух. Этот воздух и защищает животных от холода.

воздух плохо проводит тепло Использование человеком плохой проводимости воздуха

воздух упруг Использование человеком упругости воздуха

Воздух легче воды: Мы не боимся утонуть, надев спасательный круг, плывя на надувном матрасе или резиновой лодке;

Вспомним свойства воздуха: прозрачен бесцветен не имеет запаха движется способен расширяться при нагревании имеет низкую плотность плохо проводит тепло упруг

Состав воздуха Воздух – это смесь газов. В его состав входят азот, кислород, углекислый газ, водяные пары и другие газы.

Выберите книгу со скидкой:

ПЕРВОЕ ЧТЕНИЕ. ШКОЛА ЖУКОВОЙ (ОБУЧАЮЩАЯ АКТИВИТИ +50 А5). ФОРМАТ: 160Х215 ММ. в кор.50шт

350 руб. 94.00 руб.

ОГЭ-2020. Литература (60х84/8) 20 тренировочных вариантов экзаменационных работ для подготовки к ОГЭ

350 руб. 230.00 руб.

ОГЭ. Литература. Новый полный справочник для подготовки к ОГЭ

350 руб. 205.00 руб.

350 руб. 116.00 руб.

Быстрое чтение за 10 дней

350 руб. 506.00 руб.

Скорочтение. Как запомнить больше, читая в 8 раз быстрее

350 руб. 922.00 руб.

Лучшее чтение на английском языке: Портрет Дориана Грея. Великий Гэтсби

350 руб. 230.00 руб.

Чтение на лето. Переходим в 6-й класс. 2-е изд., испр. и доп.

350 руб. 216.00 руб.

350 руб. 186.00 руб.

Математика. Новый полный справочник школьника для подготовки к ЕГЭ

350 руб. 222.00 руб.

Дошкольная педагогика с основами методик воспитания и обучения. Учебник для вузов. Стандарт третьего поколения. 2-е изд.

350 руб. 963.00 руб.

Считаю и решаю: для детей 5-6 лет. Ч. 1, 2-е изд., испр. и перераб.

350 руб. 169.00 руб.

БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА

Инфолавка — книжный магазин для педагогов и родителей от проекта «Инфоурок»

VI Международный дистанционный конкурс «Старт»

Идет приём заявок

  • 16 предметов
  • Для учеников 1-11 классов и дошкольников
  • Наградные и подарки

Международные дистанционные “ШКОЛЬНЫЕ ИНФОКОНКУРСЫ”

для дошкольников и учеников 1–11 классов

Оргвзнос: от 15 руб.

Идет приём заявок

  • Соснина Светлана Ивановна
  • Написать
  • 18602
  • 09.12.2015

Номер материала: ДВ-243544

Добавляйте авторские материалы и получите призы от Инфоурок

Призовой фонд 200 000 руб.

  • 09.12.2015
  • 1192
  • 09.12.2015
  • 531
  • 09.12.2015
  • 312
  • 09.12.2015
  • 662
  • 09.12.2015
  • 424
  • 09.12.2015
  • 294

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Источник:
http://infourok.ru/kak-chelovek-ispolzuet-svoystva-vozduha-prezentaciya-670023.html

Урок по теме «Свойства воздуха»

Образовательные

  • Сформировать понятие о воздухе и его свойствах.
  • Расшиpить представление учащихся об использовании свойств воздуха человеком.
  • Познакомить с экологической проблемой воздуха и мерами ее предотвращения.
  • Развивающие

  • Развить речь и логическое мышление.
  • Развить умение анализировать и делать выводы.
  • Развивать воображение и творческие способности.
  • Воспитательные

  • Воспитывать умение слушать друг друга, сотрудничать друг с другом.
  • Воспитывать бережное отношение к окружающей среде.
  • 3. Доклады и рисунки.

    4. Приборы для проведения опытов.

    5. Таблицы и схемы.

    7. Выставка книг.

    8. Журнал, оформленный детьми.

    Постановка учебной задачи урока.

    Учитель: Наша планета называется Земля. Учеными доказано, что только на нашей планете есть жизнь. Докажите почему?

    Дети: 1. Атмосфера — воздушная оболочка нашей планеты с помощью озонового слоя защищает поверхность Земли от губительного ультрафиолетового облучения, от падения метеоритов, от давления космоса.

    2. Атмосфера обеспечивает постоянные условия для жизни от перегрева и переохлаждения.

    3. Благодаря циркуляции ветров формируются условия жизни на Земле, в которых может существовать биосфера.

    4. Все живые организмы дышат и поглощают в процессе дыхания кислород из атмосферы.

    5. Растения используют углекислый газ воздуха в процессе фотосинтеза и выделяют кислород.

    Учитель: Воздух окружает нас со всех сторон и занимает все свободное пространство. Воздух есть в воде, в разных предметах, растениях. Есть он в теле человека и в теле животных. Однако есть способы увидеть и почувствовать воздух. Давайте проверим это вмести с вами. Докажите, что вокруг нас есть воздух.

    Самый простой способ состоит в том, чтобы продемонстрировать его наличие. Для этого надо помахать веером перед лицом (наглядно). Мы почувствуем прикосновение, хотя веер до нас не прикасался. Значит между веером и лицом есть какое-то тело. Это воздух.

    — Давайте проведем еще один опыт и узнаем, где находится воздух. Нам понадобится:

    • прозрачная банка с водой;

    • мячик для пинг-понга;

    1. Положим шарик на поверхность воды.

    2. Опрокинем стакан накрыв шарик, и опустим его на дно емкости.

    Вода не проникла в банку, и шарик лежит на дне емкости почти на сухом месте.

    Это потому чтовоздух, находившийся в стакане не позволяет воде проникнуть внутрь. На самом деле стакан только кажется пустым.

    З. Сейчас наклоним стакан, из стакана выходят пузыри, поднимаются на поверхность и лопаются. Вода проникает в стакан, шарик поднимается вверх.

    — Это потому что воздух, наполняющий стакан выходит из него, поднимается вверх, а вода занимает его место.

    Учитель: Благодаря ветру тепло и влага разносятся по всей поверхности Земли. Больше того без ветра вся суша превратилась бы в пустыню. В чем причина образования ветра?

    Причина образования ветра — различное давление воздушного столба над участками Земли. Ветер дует из области высокого давления в область низкого давления. Обычно высокое давление наблюдается в области с холодными воздушными массами, а более низкое — с теплыми. То есть ветер дует от менее нагретого, к более нагретому. Ветры приводит к более равномерному перераспределению тепла и осадков на поверхности Земли. Если бы на планете не существовала циркуляция ветров, климат на различных участках был бы гораздо контрастнее.

    Тема урока: “Свойства воздуха”

    II. Расширение при нагревании

    III. Плотность воздуха.

    IV. Плохая проводимость тепла.

    V. Упругость воздуха.

    Учитель: 1. Тема нашего урока “Свойства воздуха и как человек эти свойства использует. На прошлом уроке вы получили задание (сесть по группам). Распределиться по группам и по интересам и подготовиться выступать о том, какими свойствами обладает воздух и, как человек использует свойства воздуха. Я жду от вас интересных выступлений, активности, научных обоснований, гипотез, сядьте по группам.

    2. Актуализация и систематизация знаний учащихся.

    I. Мы подбирали материал о силе ветра (на доске 1 свойство). Человек издавна научился использовать ветер как источник энергии. Он изобрел парашют, который позволил ему отправиться путешествовать. Уже 2-3 тысячи лет назад египтяне плавали по Средиземному морю на вполне совершенных парусных судах. В средние века строились ветряные колеса, которые осуществляли различные функции в хозяйстве человека (ветряная мельница), однако в современности ветряной двигатель начинает играть большую роль. Ветряные электростанции — самый чистый способ получения электричества: окружающая природа при этом не загрязняется.

    II. Второе свойство — расширение при нагревании (на доске название свойства).

    — Сейчас мы на опыте узнаем, что происходит с воздухом, при нагревании. Нам потребуется:

    • тазик и горячая вода.

    1. Пустой воздушный шарик наденем на горлышко бутылки.

    2. Подержим бутылку в тазике с горячей водой.

    Результат: шарик надулся

    — Это потому что воздух, как и все вещества состоит из мельчащих движущих частиц — молекул. Молекулы при нагревании ударяются друг о друга. Воздух в бутылке расширяется, ему требуется дополнительное пространство. Поэтому он приникает в шарик и надувает его.

    Читайте также  Сколько раз в год рожает кошка: физиологические особенности

    — Я покажу вам опыт который тоже доказывает это свойство воздуха и называется “он” волшебный стакан.

    • горячая и холодная вода.

    1. Положим книгу на стол, на нее с небольшим наклоном положим дощечку, намочим стакан холодной водой и поставим его. Посмотри, что происходит (стакан стоит на месте).

    2. Тeперь намочим стакан горячей водой и поставим его так же как в первый раз.

    Результат: Когда стакан смочен холодной водой, он практически стоит на месте. Когда стакан смочен горячей водой, он быстро скользит.

    Это потому ЧТО воздух в горячем стакане расширяется и чуть — чуть приподнимает стакан. Когда стакан смочен горячей водой, он быстро скользит по доске.

    Другой способ передвижения по воздуху — воздушные шары, заполненные более легким, чем воздух, газом или просто нагретым воздухом. Началом эры воздухоплавания следует считать 1783 год, когда братья Монгольдье поднялись в воздух на воздушном шаре, заполненным горячим воздухом. Возможность передвижения по воздуху летательных аппаратов связана с тем, что воздух также обладает выталкивающей силой. Если тело оказывается легче воздуха, то оно может лететь. А использование нагретого воздуха для заполнения воздушного шара связано с таким свойством, как расширение при нагревании. При нагревании теплый воздух становиться легче и поднимается вверх.

    Однако главный недостаток воздушного шара — его слабая управляемость. Изобретатели стремились создать такой летательный аппарат,который мог бы передвигаться с помощью воздушного винта. В конце XIX века были построены дирижабли, — движущиеся с помощью двигатель летательные аппараты, заполненные водородом.

    III. Плотность воздуха. (На доске повесить табличку с эти свойством) Наводу нельзя надежно опереться — она жидкая. Однако водному лыжнику это удается, если развить достаточную скорость. Воздух еще менее плотный, чем вода. Но если развить большую скорость, — оказывается, и на него можно опереться. Это открытие позволило создать более совершенные летательные аппараты, чем воздушные шары — самолеты и вертолеты. Именно благодаря малой плотности воздуха по нему можно перемещаться во много раз быстрее.

    Лишь самолеты обеспечили людям возможность передвигаться на значительные расстояния с большой скоростью. Правда произошло это не сразу. Появление авиации стало возможным тогда, когда мощность и легкость двигателей и материалов для конструирования достигла определенного уровня.

    Первый самолет с двигателем братьев Райт поднялся в воздух в 1903 году. Самолет поднимается также за счет подъемной силы, создаваемой при движении с большой скоростью на крыле, имеющем особую форму в профиль.

    IV. Благодаря низкой плотность воздух обладает замечательным свойством: он плохо проводит тепло (на доске это свойство). Звери поднимают шерсть, птицы хохлятся, когда им холодно, а человек надевает теплый свитер все это только для того, чтобы окружить себя воздушной оболочкой, которая плохо проводит тепло. Свитер не дает телу потерять свое тепло. С той же целью в окна вставляют вторые рамы. Стекла сами по себе не защищают от холода, они лишь удерживают прослойку воздуха, который не пропускает теплый воздух из квартиры на улицу.

    V. Последнее свойство воздуха (на доске это свойство) — упругость воздуха, то есть способность воздуха восстанавливать прежний объем после прекращения давления на него.

    Проведем опыт. Возьмем пластмассовый шприц (без иглы) и поставим его поршень в среднее положение. Крепко зажать пальцем отверстие для иглы, попробуем задвинуть, а затем вытянуть поршень. Что же происходить?

    Приложив усилие воздух можно сжать и растянуть, но он стремиться сохранить первоначальный объем.

    Это свойство называется упругостью. Автомобильные шины, надувной матрац, футбольный мяч, воздушный шар — сохраняют упругость накаченного воздуха. (наглядно продемонстрировать упругость накаченного воздухом воздушного шара).

    VI. Физкультурная пауза.

    VII. Нашей редакционной группой был подобран материал и выпущен журнал о воздухе. Попросим ребят кратко рассказать о составе воздуха.

    Воздух — это смесь газов: азота, кислорода и углекислого газа. В воздухе содержится около 21 % кислорода, чуть больше 78 % азота, 0,9 % благородных газов и 0,03 % углекислого газа, кроме этого в небольших количествах содержится водород.

    Любой газ можно превратить в твердое вещество, если охладить. Но обычно для этого требуется очень низкая температура. Углекислый газ, охлажденный до твердого состояния, используют для замораживания продуктов и называют искусственным или сухим льдом: он тает при — 78 С.

    Жидкий азот образуется при температуре — 196 С, его используют, например, в медицине. На химических заводах из азота воздуха делают удобрения ДЛЯ растений.

    Чистый кислород используют для дыхания больных. Им же наполняют акваланги — для подводного дыхания. А жидкий кислород применяют для окисления топлива космических кораблей. Ведь без кислорода невозможно не только дыхание, но и горение.

    Источник:
    http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/644149/

    Как человек использует плохую проводимость тепла воздухом

    • Главная
    • Список секций
    • Физика
    • Теплопроводность в жизни человека

    Теплопроводность в жизни человека

    Автор работы награжден дипломом победителя III степени

    С давних времен и до сегодняшнего дня люди задаются вопросом, как сохранить тепло. Проблемы поддержания температурного режима в доме, проблемы, связанные с теплой одеждой и посудой, наиболее часто становились причиной различных болезней, плохого питания и неспособности противостоять природным условиям. Решение этих проблем напрямую связано с теплопроводностью. Человеку важно знать, из какого материала состоит тот или иной предмет, понимать, от чего зависит его теплопроводность и быть готовым к его реакции в разных температурных условиях. В данной работе мы постараемся разобраться в этом, а также ответить на вопрос, почему некоторые предметы имеют хорошую теплопроводность, а некоторые совсем не проводят тепло?

    Объектом исследования является явление теплопроводности.

    Предметом исследования являются кухонная посуда, строительные материалы, ткани, снег.

    Цель работы заключается в экспериментальном изучении теплопроводности тканей, кухонной посуды, строительных материалов и снега.

    Для достижения поставленной цели необходимо решить следующие задачи:

    Изучить информацию о теплопроводности;

    Исследовать теплопроводность различных веществ и материалов;

    Объяснить наблюдаемые явления, основываясь на физических законах;

    Представить свои примеры теплопроводности;

    Описать роль теплопроводности в повседневной жизни и в строительстве.

    Основными методами исследования являются:

    Изучение литературы по теплопроводности материалов;

    Проведение экспериментов по изучению теплопроводности;

    Анализ полученных результатов.

    Актуальность данной работы заключается в том, что она может стать полезным источником для изучения теории на уроках физики, а также пробудить в учениках интерес и любовь к физике. Кроме того, данная работа представляет собой первые шаги на пути к серьезным открытиям в сфере теплопроводности, способным изменить нашу жизнь в лучшую сторону.

    Глава 1. Из истории открытия теплопроводности Явление теплопередачи

    В современной жизни материальный комфорт в каждом доме связан с тепловыми явлениями. Без теплоты в доме, без посуды, удерживающей тепло, без теплой одежды зимой и без многого другого сейчас невозможно представить жизнь. В древности люди тоже не могли обойтись без теплой одежды и предметов быта. Поэтому многие ученые и философы начали интересоваться тепловыми явлениями еще в древние времена.

    Явление теплопередачи изучалось несколько веков. Но, ни в древности, ни в средние века оно не было изучено до конца. Были лишь простые и единые описания теплопередачи. Ученые утверждали, что если температура вещества повышается, то оно получает теплоту, а если температура понижается, то вещество выделяет теплоту в окружающую среду.

    На протяжении многих веков ученые изучали тепловые явления, однако их деятельность получила развитие только в XVIII веке благодаря изобретенному Галилеем термометру. Первые исследования с помощью термометра были посвящены калориметрии — методу измерения количества теплоты, изучению теплового расширения тел, явлений теплопроводности. Поэтому, можно считать, что основные понятия о теплоте появились именно в XVIII веке.

    В сочинении «Мемуары о теплоте» ученые Антуан Лавуазье (1743-1794) и Пьер Лаплас (1749-1827) рассказали о развитии учения о теплоте, понятии температуры, количестве теплоты и о теплоемкости. Благодаря французским ученым явление передачи тепла начало активно изучаться, и появилось множество работ, посвященных изучению теплоты.

    Одна из значимых работ появилась в 1701 году и была посвящена вопросам теплоты. В работе Ньютон сформулировал закон охлаждения тел. В законе говорилось о том, что температура тела уменьшается пропорционально по мере охлаждения, приближаясь к температуре окружающей среды. Выяснилось, что скорость охлаждения зависит от параметра k=αAC (коэффициента теплопроводности). Ньютон доказал, что с увеличением коэффициента k, тело будет охлаждаться быстрее (Рис.1 – «Изменение коэффициента теплопроводности»).

    Дальнейшие исследования передачи теплоты показали, что процесс охлаждения осуществляется различными способами, которые имеют разную физическую силу. Так возникли излучение теплопроводности и тепловое излучение. Эти два самостоятельных направления отличаются друг от друга тем, что тепловое излучение может осуществляться даже в полном вакууме, а излучение теплопроводности нет, также первое не требует прямого контакта при теплопередаче, а для второго оно необходимо. При теоретическом анализе, основанного на законе охлаждения Ньютона, произошли некоторые трудности, но Фурье сформулировал, что поток тепла пропорционален разности градиенту температуры, таким образом, он сформулировал закон теплопроводности. Закон Фурье показывает, что количество теплоты Q, проходящее через площадку S, за время T, вдоль направления X определяется по формуле:

    где dT/dx — изменение температуры на единицу длины, k — коэффициент теплопроводности.

    Рис.1 – «Изменение коэффициента теплопроводности»

    В 1744 — 1745 годах появилось утверждение о том, что тепловые явления обусловлены движением молекул тела. Данное утверждение высказал М.В. Ломоносов в своих «Размышлениях о причине теплоты и холода». Однако предположения Ломоносова расходились с действующими в то время теориями о теплоте. Поэтому, чтобы отличие взглядов Ломоносова и теорий теплоты стало очевидным, обратимся к XVIII столетию и представлениям о теплоте того времени. Теплоту представляли в виде невесомой и невидимой жидкости, которая впитывает поры тела. Жидкость, которая является невидимой и невесомой одновременно назвали теплородом.

    В конце XVIII века английский физик Румфорд доказал правильность идеи Ломоносова. К такому выводу Румфорд пришел, когда наблюдал за изготовлением пушек. Он обратил внимание на то, что при сверлении ствола пушки сверло сильно нагревается. Это означало, что при трении тела нагреваются. Данное явление было известно еще в начале истории человечества. Древние люди с помощью трения добывали огонь, но они не смогли увидеть за этим явлением закон природы. Румофорд стал первым исследователем, кому это оказалось посильным. При наблюдении за сверлением ствола пушки у физика появился вопрос: отчего происходит нагревание тела? Не происходит ли нагревание оттого, что металлические опилки, полученные при сверлении, обладают меньшей теплоемкостью, чем сам ствол пушки? Ответ заключается в том, что количество теплоты металла при переходе в опилки может уместиться в них, только если будет повышение температуры.

    Читайте также  Конструкция мольберта-треноги - Лира: подробности на фото

    Когда появилось предположение о том, что теплоемкость сплошного металла и теплоемкость опилок одинаковы, то оказалось, что объяснения Румфорда о нагревании металла неверно. Тогда Румфорд предположил, что теплота входит в изделие из воздуха. В доказательство физик залил водой рассверливаемый ствол пушки. Получилось так, что вода нагрелась и даже закипела. Значит и первое, и второе объяснения являются верными. Узнав свою правоту Румфорд заявил: «для того чтобы получить теплоту в неограниченном количестве, достаточно продолжить сверлить, при этом теплоту нельзя считать теплородом». Поэтому все тепловые явления следует рассматривать как движение.

    Глава 2. Теплопроводность 2.1. Определение теплопроводности

    Различают три вида теплопередачи: конвенция, излучение и теплопроводность. Конвенция — процесс передачи тепла движущими массами жидкости и газа. Тепловое излучение — перенос тепла в газообразной середе или вакууме в виде электромагнитных волн. Теплопроводность — способность материалов передавать через свою толщину тепловой поток. Тепловой поток возникает из-за разности температур на противоположных поверхностях.

    Мы остановимся на третьем виде теплопередачи и узнаем о теплопроводности немного больше. Теплопроводность больше проявляется в сплошных твердых телах, а также теплопроводность находится и в капельках жидкостях и газах. В твердых материалах основным видом теплообмена является теплопроводность. Теплопроводность материалов зависит от средней плотности и химико-минерального состава, влажности, структуры и средней температуры материала. Известно, что чем меньше средняя плотность материала, тeм ниже его теплопроводность. Тeплопроводность увеличивается тогда, кoгда увеличивается влажность материала. Рaзличные материалы имеют разную теплопроводность, одни медленно проводят теплоту, другие — быстрeе. Поэтому и количественный показатель теплопроводности — коэффициент теплопроводности (λ (лямбда)) — бyдeт y всех материалов свой. С увеличением плотности, влажности и температуры материала повышается λ. Коэффициент теплопроводностизaвисит oт плотности, влaжности, тeмпературы и cтруктуры материала.

    2.2. Суть теплопроводности

    Теплопроводность происходит из-за движения тепла и взаимодействия его составляющих частиц друг с другом. Процесс теплопроводности стремиться сделать температуру всего тела одинаковой. Теплопроводность — это свойство тел проводить тепло, основанное на теплообмене, которое происходит между атомами и молекулами тела. Однако, при теплопроводности не происходит перенос вещества от одного конца тела к другому. Все потому, что у жидкостей теплопроводность небольшая. Газы тоже имеют маленькую теплопроводность.

    Теплопроводность жидкости намного меньше теплопроводности твердого тела. Это зависит от молекул, которые наводятся в том или ином теле и от плотности. Жидкости имеют маленькую теплопроводность из-за того, что молекулы в ней расположены далеко друг от друга, в отличие от молекул твердого тела. Плотность газа меньше плотности жидкости, следовательно, молекулы газа находятся на большом расстоянии друг от друга, а это значит, что газы имеют теплопроводность меньше, чем любые жидкости.

    Плохой теплопроводностью обладают не только газы и жидкости, но и волосы, шерсть, перья и бумага. Известно, что между волокнами этих веществ расположен воздух, а это преграда для передачи тепла. Поэтому шерсть обладает плохой теплопроводностью, а значит, что она не пропускает холод и способна удерживать тепло, поэтому в мороз смело можно надевать шерстяную кофту и не волноваться о том, что можно замерзнуть. Теперь нам известно, что благодаря плотно соединенным шерстяным волоскам кофта обладает плохой теплопроводность и не пропускает холод.

    Глава 3. Экспериментальные работы по изучению и созданию теплопроводности различных материалов

    В России в зимнее время года, температура на улице становится все ниже. Известно, что самые холодные зимы именно в нашей стране. Однако низкие температуры не останавливают отважных ребят, которые, несмотря на мороз, выходят слепить снеговиков и покататься на санках. В некоторых случаях через определенное время дети жалуются на озябшие руки и ноги. В то же время другие ребята продолжают играть и веселиться, несмотря на холод. Нам стало интересно, почему некоторые дети в одинаковой по внешнему виду одежде замерзают, а некоторые продолжают гулять, не обращая внимания на мороз. Мы попробовали разобраться в этом и изучить свойства различных тканей с точки зрения физики. Чтобы решить проблему с теплой одеждой, нам необходимо исследовать некоторые виды тканей на теплопроводность.

    Опыт №1 Изучение теплопроводности тканей

    Необходимые приборы и материалы:

    Полиэтиленовые пакетики 7х5 см.

    Флисовая ткань10х10 см.

    Синтетическая ткань 10х10 см.

    Фланелевая ткань 10х10 см.

    Хлопковая ткань 10х10 см.

    Рис.2 – «Изучение теплопроводности тканей»

    Болоньевая ткань 10х10 см.

    Трикотажная ткань 10х10 см.

    Подготовить лед и кусочки ткани одинакового размера.

    Положить лед в полиэтиленовые пакетики и обернуть различными кусочками ткани (Рис.2а;б– «Изучение теплопроводности тканей»).

    Завязать ткани со льдом так, чтобы воздух не попадал внутрь ткани.

    Через 1 час измерить температуру льда во всех пакетиках с тканью.

    Табл.1 – «Теплопроводность тканей»

    Спустя 1 час лед во всех тканях растаял. Только в пакетике с флисовой тканью (№2) остался лед. Это означает, что флисовая ткань не пропускает тепло и обладает плохой теплопроводностью, а значит, во флисовой одежде зимой замерзнешь намного позже, чем, например, в болоньевой. Любая ткань в своем составе имеет волокна с воздухом, которые способные удерживать тепло. Если волокна с воздухом далеко расположены друг от друга, то ткань будет пропускать тепло. Если же волокна расположены близко, ткань наоборот будет удерживать тепло.

    Источник:
    http://school-science.ru/5/11/33935

    Свойства воздуха

    Воздух – это смесь газов. Окружает планету, образует атмосферу и содержится во всём, что существует. Он есть в воде, земле, растениях, животных, горах, камнях и необходим для жизни живых организмов. Физические, химические и гигиенические свойства формируют климат в регионах частей Земли, влияют на жизнедеятельность растений и животных.

    Основные свойства воздуха

    • Прозрачен.
    • Не имеет цвета и запаха.
    • Не имеет формы, занимает всё пространство.
    • Упругость.
    • Проводит звук и солнечные лучи.
    • Сохраняет тепло.
    • При нагревании расширяется, при охлаждении сжимается.
    • Подвижен.

    Физические свойства

    1. Температурные. Регулирует теплообмен.
    2. Влажность. Определяет насыщение газов кислородом, содержание водяного пара.
    3. Атмосферное давление. Масса атмосферного столба, который давит на поверхность планеты и на всё, что расположено внутри воздушного океана.
    4. Подвижность. Формирует ветра и обновление газового состава.
    5. Солнечная радиация. Определяет процент радиоактивных веществ и газов, содержащихся в атмосфере. Основной показатель формирования климата планеты.
    6. Электрическая активность. Количество электрических зарядов, содержащихся в воздушном пространстве.

    Химический состав воздуха

    Воздушная оболочка Земли формируется из смеси газов:

    • Азот. Основной компонент атмосферы. Не участвует в дыхании, не поддерживает горение. Обеспечивает жизнедеятельность водорослей и некоторых растений.
    • Кислород. Жизненно необходимый элемент. Является необходимым в формировании биологических процессов организмов животных, растений. Служит окислителем и основным компонентом горения веществ.
    • Углекислый газ. Поглощается деревьями и преобразуется в кислород.

    В небольших количествах атмосфера содержит озон, водород, неон, другие газы. По количеству содержания вредных примесей определяют чистоту воздуха. Подробнее – в статье о составе воздуха.

    Теплопроводность воздуха

    Окружающий воздух практически не проводит тепло. Особенность задерживать тепловой заряд широко используется человеком и животными. Ограничивая подвижность потока, воздушная прослойка задерживает теплообмен организмов, создаёт комфортный микроклимат.

    При нагревании с воздухом происходит расширение и он поднимается, становится разреженным. Изменяется его химический состав и влажность. Водяной пар распадается на отдельные газы, становится более летучим.

    При охлаждении воздух сжимается и он опускается. Незначительное содержание твёрдых частиц в газах окисляется и насыщается водяными парами. Воздух становится тяжелее и плотнее.

    Применение и использование свойств воздуха

    Воздушную оболочку планеты активно используют животные и птицы. Способность задерживать тепло помогает животным выживать и регулировать тепловые процессы организма. Шерсть, обитателей северных широт, имеет полую структуру.

    Особое строение пера и движение воздушных масс птицы используют для полётов и планирования над землёй.

    Наполненный атмосферой пузырь, удерживает рыб в толще воды и способствует перемещению из глубин водоёмов к поверхности.

    Подвижность используется растениями для опыления и распространения семян на большие площади.

    Человек использует свойства атмосферы в широких спектрах своей жизнедеятельности:

    • Теплопроводность обеспечивает обогрев и терморегуляцию организма.
    • Способность тёплых воздушных потоков подниматься используют в полётах.
    • Упругость и сжатие применяют во всех промышленных системах. Его закачивают в автомобильные шины. Нагнетая воздушное давление, работают пневматические инструменты, оружие.
    • Кислород участвует в процессах горения. Все двигатели внутреннего сгорания потребляют большие объёмы кислорода и его соединений.

    Более подробная информация об использовании и значении воздуха живыми организмами здесь.

    Сравнение свойств воды и воздуха

    Основную роль воздушный океан играет в дыхании всех живых существ Земли. Содержание его в воде используется всеми подводными животными и растениями.

    Вода и воздух имеют похожие параметры. Она так же прозрачна и безвкусна, так же реагирует на нагрев и охлаждение. Основным отличием воды является способность растворять вещества и её большая плотность. Вода имеет большую массу и теплопроводность, проводит заряды электричества. Способность извлекать необходимые компоненты из воды, без применения специального оборудования, человеку и млекопитающим не под силу.

    Источник:
    http://ovozduhe.ru/svojstva-vozduha/svojstva-vozduha