Гальванические элементы

Гальванические элементы

Химические источники тока (ХИТ) или питания, в которых происходят необратимые процессы преобразования химической энергии в электрическую, называются гальваническими или первичными элементами.

Простейший гальванический элемент Вольта (рис. 2-2) состоит из двух электродов — цинкового и медного, погруженных в водный раствор серной кислоты. Часть молекул этой кислоты в присутствии воды распадается на положительные (2Н) и отрицательные (SО4) ионы. Цинковый электрод под действием химических сил растворяется в электролите.

Положительные ионы цинка переходят в раствор, соединяясь с отрицательными ионами (SО4), образуют нейтральные молекулы цинкового купороса (ZnSO4). Положительные ионы водорода заряжают электролит положительно. Цинковый электрод заряжается отрицательно. В результате в пограничном слое цинк — электролит создается разность потенциалов, возникает электрическое поле, направленное от электролита к цинковому электроду. Силы поля противодействуют переходу положительных ионов цинка в электролит. По достижении равновесия между силами электрического поля и химическими растворение цинка в электролите прекращается. Часть положительных ионов (2Н) нейтрализуется за счет свободных электронов медного электрода, который почти не растворяется в электролите. Вследствие этого медный электрод будет иметь положительный потенциал, мало отличающийся от потенциала электролита.

Рис. 2-2. Элемент Вольта и схема его включения

Электродвижущая сила элемента (э. д. с.) равна разности потенциалов между медным и цинковым электродами — напряжению между электродами, если к элементу не присоединена внешняя цепь. Электродвижущая сила элемента Вольта равна около 1,1 в. Электродвижущая сила в элементе направлена от отрицательного электрода (зажима) к положительному и совпадает с направлением тока в нем.

Присоединим к зажимам элемента внешнюю цепь, замкнув рубильник Р (рис. 2-2). Под действием э. д. с. в цепи возникнет ток, при этом во внешнем участке цепи электроны будут двигаться от отрицательного зажима к положительному.

Ток вызывает уменьшение зарядов на электродах, а следовательно, уменьшение электрического поля и нарушение равновесия электрических и химических сил. Под действием последних в электролит переходят новые ионы цинка, а ионы водорода, приближаясь к медному электроду, соединяются с его свободными электронами, становясь нейтральными молекулами водорода. Медный электрод покрывается плохо проводящим слоем пузырьков водорода, отделяющим его от электролита. Это явление называется поляризацией элемента. Она приводит к уменьшению э. д. с. и увеличению внутреннего сопротивления элемента. Для устранения поляризации применяют деполяризаторы — вещества, легко отдающие кислород, например перекись марганца. Кислород деполяризатора, соединяясь с водородом, образует воду, освобождая электрод от плохо проводящего слоя водорода.

В настоящее время из большого числа различных первичных элементов, изготовляемых заводами электротехнической промышленности, наибольшее распространение получили марганцово-цинковые элементы (МЦЭ).

Они изготовляются сухими и наливными.

Последние заливаются электролитом и приводятся в действие непосредственно перед их использованием. Они называются еще резервными, так как могут длительно храниться до заливки их электролитом. Марганцово-цинковые элементы изготовляются стаканчиковой и галетной конструкции.

В марганцово-цинковом элементе стаканчиковой конструкции (рис 2-3) отрицательный цинковый электрод одновременно является сосудом, имеющим форму цилиндрического или прямоугольного стакана.

Положительным электродом служит угольный стержень, расположенный в центре стакана. Вокруг угольного электрода запрессован деполяризатор (смесь двуокиси марганца, графита и сажи). Пространство между деполяризатором и цинковым стаканом заполняется электролитом, представляющим водный раствор хлористого аммония (нашатыря) с добавлением некоторых солей и загустителя — муки.

Рис. 2 -3. Марганцово-цинковый элемент (МЦЭ) стаканчикового типа.

Электродвижущая сила МЦЭ составляет около 1,5 в. Наибольший ток, который допускается при использовании элемента, называется номинальным разрядным током элемента. Количество электричества, которое можно получить от элемента за время его работы, называется емкостью элемента. Емкость измеряется в ампер-часах:

Марганцово-цинковые элементы выпускаются весом от нескольких грамм до 1 кг и более. Из отдельных элементов собираются батареи с напряжением до 160 в. Они применяются для карманных фонарей, слуховых аппаратов, в радиотехнике, аппаратуре связи и т. д.

Статья на тему Гальванические элементы

Источник:
http://znaesh-kak.com/e/e/%D0%B3%D0%B0%D0%BB%D1%8C%D0%B2%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D1%8B

Электрический ток

Похитил я божественную искру,
Сокрыл в стволе сухого тростника,
И людям стал огонь любезным братом,
Помощником, учителем во всём.

Эсхил. Прикованный Прометей

Цели урока: дать представление об электрическом токе и условиях его возникновения; познакомить учеников с источниками электрического тока; работая в группах, изготовить простейшие гальванические элементы и сравнить их некоторые свойства.

Цели развития: развивать умения наблюдать, строить модель процесса, объяснять явления с помощью аналогий, формировать первоначальный образ изучаемого объекта, ставить опыты, работать в группах, сравнивать результаты опытов, делать выводы, применять полученные знания в быту и технике. Урок должен будить мысль и создавать стойкую мотивацию к изучению физики.

Оборудование: два электрометра, проводник на изолирующей ручке, стеклянная и эбонитовая палочки, электрофорная машина, неоновая лампочка, термопара, фотоэлемент, модель генератора постоянного тока, гальванометр М-1032, ванна электролитическая, вольтметр и милливольтметр демонстрационные, две свинцовые пластины; коллекция «Металлы», лимон, вольтметр на 1,5 В, половинки севших гальванических элементов.

I. Актуализация знаний

Объясните с точки зрения электронных представлений различие между проводниками и диэлектриками. • При соединении любого заряженного тела с землёй оно практически полностью теряет свой заряд. Как объяснить этот факт? • На тонких шёлковых нитях подвешены две одинаковые лёгкие гильзы, одна из которых заряжена. Как определить, какая гильза заряжена? • Как объяснить, почему предварительно наэлектризованные тела притягиваются к ненаэлектризованным? • На электроскопе имеется небольшой положительный заряд. Если к шарику электроскопа приближать сильно наэлектризованную палочку, несущую большой отрицательный заряд, то листочки электроскопа сначала опадут, а потом опять разойдутся. Как это объяснить?

II. Постановка проблемы

Учитель. Что такое электрический ток? Электрическую энергию вырабатывают на электростанциях. (Презентация рисунков на интерактивной доске: ТЭС, ТЭЦ, ГРЭС, ГЭС, АЭС.) Оттуда она по проводам передаётся потребителям – на электродвигатели, к электропечам, лампам накаливания и т.д. Например, наэлектризовав стеклянную и эбонитовую палочки, т.е. совершив работу по разделению зарядов, зарядим шары электрометров разноимёнными зарядами (демонстрация клемм источника тока на схеме) и, соединив их проводником, получим кратковременный ток (слабая вспышка неоновой лампочки). До прикосновения проводника к шарам свободные заряды в нём двигались хаотически, но после соприкосновения их хаотическое движение сменилось упорядоченным. Почему?

Ученики. В проводнике появилось электрическое поле, под действием которого свободные электроны пришли в движение.

Учитель. Электрический ток – упорядоченное или направленное движение свободных заряженных частиц в среде под действием электрического поля. Как же получить постоянный ток?

Ученики. Для этого необходимы специальные устройства.

Учитель. В Китае во времена культурной революции был предложен проект источника тока мощностью 5 МВт. Его суть была в том, что 5 миллионов китайцев в хлопчатобумажных штанах должны были съезжать вниз по большой эбонитовой палочке. Проект не был реализован, но с тех пор в Китае научились строить более экономичные и более конкурентоспособные генераторы! Познакомимся и мы с источниками электрического тока.

III. Изучение нового материала

Учитель. Так каким образом в проводнике можно получить постоянный электрический ток? Устройства, создающие электрическое поле, называют источниками электрического тока. Роль источника тока сводится к разделению электрических зарядов, благодаря чему и создаётся электрическое поле. Разделяют заряды за счёт механической, химической и других видов энергии. В каком-то смысле электрическая цепь аналогична системе водяного отопления: горячая вода (аналог электрического тока) циркулирует по трубам (аналогам проводов) под действием водяных насосов (аналогов источника тока).

В электрофорной машине в электрическую энергию превращается механическая энергия (демонстрация). Создаваемый ток мал, поэтому подключённая к клеммам неоновая лампочка светится слабо. Гораздо ярче лампочка светится при подключении к осветительной сети (демонстрация).

В термопаре и термобатарее в электрическую энергию преобразуется внутренняя энергия (демонстрация). Где можно применить термопару?

Ученики. Для получения постоянного тока, для измерения температуры тел, если она не превышает температуру плавления металлов, составляющих термопару.

Учитель. В фотоэлементе и в солнечной батарее в электрическую энергию преобразуется световая энергия (демонстрация). Каков, по вашему мнению, принцип действия фотоэлемента?

Ученики. Скорее всего, в фотоэлементе под действием света появляются свободные электроны. Чем больше света падает на фотоэлемент, тем больше свободных электронов!

Учитель. На электростанциях электрический ток получают с помощью индукционных генераторов переменного и постоянного тока (демонстрация свечения низковольтной лампочки накаливания, подключённой к клеммам модели генератора постоянного тока). Кто вращает ручку генератора на Томусинской ТЭС?

Ученики. Не кто, а что! Это работу совершает горячий пар!

Учитель. Знакомы ли вам другие источники постоянного тока? Читаем Гальвани: «. И вот, замечая иногда, что препарированные лягушки, которые были подвешены на железной решётке, окружающей балкон нашего дома, при помощи медных крючков, воткнутых в спинной мозг, впадали в обычные сокращения не только в грозу, но иногда также при спокойном и ясном небе, я решил. » Что решил Луиджи Гальвани? Попробуем и мы повторить его опыты. Что нам для этого нужно?

Ученики. Цинк, медь и лягушка!

Учитель. Лягушки у нас нет, а всё остальное есть! (Демонстрация элемента Вольта, измерение напряжения на его клеммах.) Заменив медный электрод угольным стержнем, наблюдаем, что в этом случае источник работает лучше. Почему источник не работает, если использовать два медных электрода? Какова роль в этом процессе водного раствора серной кислоты – электролита? Почему нельзя ставить зубные коронки из разных металлов?

Читайте также  Как легко сломать навесной замок гаечным ключом: видео

Ученики. Во рту будет течь ток.

Учитель. В гальваническом элементе химическая энергия преобразуется в электрическую энергию.

Запишем обозначения на электрической схеме:

– гальванический элемент:

– батарея из трёх элементов:

– батарея из n элементов:

Электрический ток можно получить, даже если электроды выполнены из двух одинаковых металлов, например, из свинца. Пример – аккумулятор. (Демонстрация принципа действия кислотного аккумулятора с двумя свинцовыми пластинами.) Почему две свинцовые пластины не образуют гальваническую пару? (Демонстрация зарядки аккумулятора от источника постоянного тока, измерение напряжения на его клеммах после зарядки.) Почему теперь свинцовые пластины образуют гальваническую пару?

Ученики. Электроды после пропускания тока зарядки стали разными по химическому составу.

Учитель. Да! Произошло окисление одного из электродов под действием электрического тока.

IV. Работа в группах. Изготовление самодельных гальванических элементов

Задание группе 1. От какой гальванической пары можно получить максимальное напряжение?

Оборудование: вольтметр на 1,5 В; металлы: сталь, цинк, медь, латунь, алюминий; долька лимона; два провода; прищепка.

Задание группе 2. От чего зависит максимальный ток данной гальванической пары?

Оборудование: амперметр на 50 мА, цинковая и медная пластины, дольки лимона и яблока, два провода.

• Вопросы группам: • От какой пары металлов удалось получить наибольшее напряжение? • От чего зависит максимальный ток гальванического элемента? • Как «вернуть жизнь» гальваническому элементу (каждой группе выдаётся половинка распиленной поперёк батарейки)?

V. Вопросы для закрепления

Что понимают под электрическим током? • Какова роль источника тока? • За счёт преобразования каких видов энергии может происходить разделение зарядов в источнике тока? • Какие источники тока называют гальваническими? • Какие превращения энергии происходят в элементе Вольта?

VI. Подведение итогов урока

  1. Познакомились с источниками электрического тока – генераторами – и наблюдали их работу.
  2. Глубже познакомились с работой гальванических элементов.
  3. Научились изготавливать гальванические элементы, сравнивать их действие и выбирать наиболее эффективные из них.
  4. Применили полученные знания для ремонта гальванических элементов, отслуживших свой срок.

VII. Творческие домашние задания (даются только тем ученикам, кого заинтересовали источники тока)

  1. Изготовьте гальванические элементы.
  2. Как «продлить жизнь» гальванического элемента? Обсудите причины выхода его из строя: окисление цинкового электрода, высыхание электролита (шприцем ввести воду с последующей зарядкой), выход из строя деполяризатора (зарядить).
  3. Потечёт ли по медному проводу электрический ток, если один конец его опустить в водный раствор поваренной соли, а другой – в раствор серной кислоты?
  4. При изготовлении батарейки затрачивается энергии в 2000 раз больше, чем эта батарейка способна отдать в процессе своей работы. Докажите это.
  5. «Живые» источники тока: гигантский электрический скат создаёт напряжение 50–60 В; нильский электрический сом – 350 В; угорь электрофорус – 500 В. Как им это удаётся?
  6. Предложите конструкцию спасательного маяка, который начинает вырабатывать ток, когда в него попадает солёная вода.
  7. Используя план изучения прибора и таблицу «Гальванические элементы», предложите её более наглядный электронный вариант.

План изучения физического прибора

  1. Общая характеристика прибора.
  2. Устройство прибора.
  3. Модель прибора.
  4. Основные уравнения, описывающие работу прибора.
  5. Типы прибора.
  6. Практические применения.

Гальванические элементы (по плану)

Источник:
http://fiz.1sept.ru/view_article.php?ID=200902104

Гальванические элементы. Виды и устройство. Работа и особенности

В первых опытах ученых в емкость с кислотой опускали две металлические пластины: медную и цинковую. Пластины соединяли проводником, после чего на медной пластине появлялись газовые пузырьки, а цинковая пластина стала растворяться. Было доказано, что по проводнику проходит электрический ток. Это исследование начинал итальянский ученый Гальвани, от него и получили название гальванические элементы.

После этого ученый Вольта разработал цилиндрическую форму этого элемента в виде вертикального столбика, включающего в себя набор колец меди, цинка и сукна, соединенных друг с другом, и пропитанных кислотой. Разработанный Вольтом вертикальный элемент полуметровой высоты вырабатывал напряжение, которое мог почувствовать человек.

Гальванические элементы — это источники электрической энергии, вырабатывающие электрический ток методом химического взаимодействия двух металлов в электролите. Химическая энергия в гальванических элементах преобразуется в электрический ток.

Виды и особенности устройства
Батарейки широко используются для питания разных электронных устройств, приборов, цифровой техники и делятся на три основных вида:
  1. Солевые.
  2. Щелочные.
  3. Литиевые.
Солевые гальванические элементы

Такие батарейки относятся к марганцево-цинковым элементам питания, и являются наиболее применяемыми в настоящее время.

Достоинствами солевых батареек являются:
  • Приемлемые электрические параметры для многих областей использования.
  • Удобство применения.
  • Малая цена ввиду небольших расходов на изготовление.
  • Простая технология изготовления.
  • Дешевое и доступное сырье.

Длительное время этот вид батареек является наиболее популярным, благодаря соотношению качества и цены. Однако в последние годы заводы изготовители уменьшают производство солевых гальванических элементов, и даже отказываются от выпуска, так как требования к источникам питания повышаются производителями электронной техники.

Недостатками солевых батареек являются:
  • Малый срок хранения, не более 2-х лет.
  • Резкое падение свойств при снижении температуры.
  • Резкое уменьшение емкости при повышении рабочего тока до эксплуатационных значений современных потребителей.
  • Быстрое уменьшение напряжения во время работы.

Солевые гальванические элементы в конце своего разряда могут потечь, что связано с вытеканием электролита из-за увеличения объема положительного электрода, который выдавливает электролит. Активная масса плюсового электрода состоит из диоксида марганца и электролита. Сажа и графит, добавленный в активную смесь, повышают электропроводность активной смеси. Их доля равна от 8 до 20% в зависимости от марки батарейки. Для увеличения срока работы окислителя активную смесь насыщают электролитом.

Минусовой электрод изготавливают из очищенного цинка, устойчивого к коррозии. В нем остается небольшая доля кадмия или свинца, являющегося ингибиторами коррозии. Раньше в батарейках в качестве электролита использовали хлорид аммония. Он участвует в реакции образования тока, создает проходимость ионов. Но такой электролит не показал хороших результатов, и его заменили хлоридом цинка с примесями хлорида кальция. Марганцево-кислые элементы работают дольше, и показывают лучшие результаты при пониженных температурах.

В солевых гальванических элементах отрицательным полюсом является цинковый корпус 7. Плюсовой электрод 6 изготовлен из активной прессованной массы, пропитанной электролитом. По центру этой массы находится угольный стержень 5, обработанный парафином для удержания влаги в электролите. Верхняя часть стержня закрыта металлическим колпаком. В сепараторе 4 находится густой электролит. В газовую камеру 1 поступают газы, образованные при работе батарейки. Сверху батарейку закрывают прокладкой 3. Весь гальванический элемент заключают в футляр 2, выполненный из картона или фольги.

Щелочные батарейки

Щелочные элементы питания появились в середине прошлого века. В них в качестве окислителя выступает диоксид марганца, а в качестве восстановителя порошковый цинк. Это дает возможность увеличить поверхность. Для предохранения от коррозии раньше применялось амальгамирование. Но после запрета на ртуть используют очищенные цинковые порошки с добавлением других металлов и ингибиторов коррозии.

Активным веществом анода щелочной (алкалиновой) батарейки стал очищенный цинк в виде порошка с добавлением алюминия, индия или свинца. Активная смесь катода включает в себя диоксид марганца, ацетиленовую сажу или графит. Электролит алкалиновых батареек состоит из едкого натра или калия с добавлением оксида цинка.

Порошковый анод позволяет значительно повысить использование активной смеси, в отличие от солевых батареек. Алкалиновые батарейки обладают значительно большей емкостью, чем солевые, при равных габаритных размерах. Они хорошо себя показали в работе на морозе.

Особенностью устройства алкалиновых элементов является порошковый цинк, поэтому вместо цинкового стакана используют стальной корпус для положительного вывода. Активная смесь положительного электрода находится возле внутренней стенки стального корпуса. В алкалиновой батарейке есть возможность разместить больше активной смеси положительного электрода, в отличие от солевой.

В активную смесь вставляется целлофановый сепаратор, смоченный электролитом. По центру батарейки проходит латунный отрицательный электрод. Остальной объем между сепаратором и отрицательным токоотводом заполняется анодной пастой в виде порошкового цинка, пропитанного густым электролитом. Обычно в качестве электролита используют щелочь, насыщенную специальными соединениями цинка. Это дает возможность предотвратить потребление щелочи в начале работы элемента, и снизить коррозию. Масса щелочных батареек выше солевых из-за стального корпуса и большей плотности активной смеси.

По многим основным параметрам алкалиновые гальванические элементы превосходят солевые элементы. Поэтому в настоящее время увеличивается объем производства щелочных батареек.

Литиевые элементы питания

Литиевые гальванические элементы применяются в различных современных устройствах. Они выпускаются различных типоразмеров и видов.

Существуют литиевые батарейки и литиевые аккумуляторы, имеющие между собой большие отличия. Батарейки имеют в составе твердый органический электролит, в отличие от других видов элементов. Литиевые элементы используются в местах, где требуются средние и малые токи разряда, стабильное рабочее напряжение. Литиевый аккумулятор можно перезаряжать определенное количество раз, а батарейки не предназначены для этого, и используются только один раз. Их запрещается вскрывать или перезаряжать.

Основные требования к производству
  • Надежная герметизация корпуса. Нельзя допускать утечки электролита и проникновения внутрь других веществ из внешней среды. Нарушение герметичности приводит к их возгоранию, так как литий является высоко активным элементом. Гальванические элементы с нарушенной герметичностью не годятся для эксплуатации.
  • Изготовление должно проходить в герметичных помещениях с аргоновой атмосферой и контролем влажности.
Читайте также  Обработка юбки обтачкой

Форма литиевых аккумуляторов бывает цилиндрической, дисковой или призматической. Габариты практически не отличаются от других видов батареек.

Область использования
Литиевые гальванические элементы обладают более длительным сроком работы, по сравнению с другими элементами. Область применения очень широка:
  • Космическая промышленность.
  • Авиационное производство.
  • Оборонная промышленность.
  • Детские игрушки.
  • Медицинская техника.
  • Компьютеры.
  • Фото- и видеокамеры.
Преимущества
  • Широкий интервал рабочих температур.
  • Компактные размеры и масса.
  • Длительная эксплуатация.
  • Стабильные параметры в различных условиях.
  • Большая емкость.
Недостатки
  • Возможность внезапного возгорания при несоблюдении правил пользования.
  • Высокая цена, по сравнению с другими видами батареек.
Принцип работы

Действие гальванических элементов основано на том, что два разных металла в среде электролита взаимодействуют между собой, в результате чего во внешней цепи образуется электрический ток.

Такие химические элементы сегодня называют батарейками. Величина напряжения батарейки зависит от применяемых видов металлов и от числа элементов, находящихся в ней. Все устройство батарейки расположено в металлическом цилиндре. Электроды представляют собой металлические сетки с напылением восстановителя и окислителя.

Батарейки не могут восстанавливать утраченные свойства, так как в них осуществляется прямое преобразование химической энергии окислителя и восстановителя в электрическую. Химические реагенты при функционировании батарейки постепенно расходуются, а электрический ток уменьшается.

Отрицательный вывод батарейки выполнен из цинка или лития, он теряет электроны и является восстановителем. Другой положительный вывод играет роль окислителя, его изготавливают из оксида магния или солей металлов. Состав электролита в обычных условиях не пропускает через себя электрический ток. При замыкании электрической цепи начинается распад электролита на ионы, что обуславливает появление его электрической проводимости. Электролит состоит чаще всего из раствора кислоты или солей натрия и калия.

Источник:
http://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/galvanicheskie-elementy/

Все о гальваническом элементе

Впервые в мире гальванический элемент был разработан Луиджи Гальвани. Об его истории читайте в этой статье. По сути это временный источник электрического тока, который формируется за счет протекания химической реакции. Поток электронов формируется за счет взаимодействия между двумя разноименными металлами. В результате этого химическая энергия преобразуется в электрическую, которую уже можно использовать в повседневной жизни.

Концентрационный гальванический элемент – это источник тока в состав которого входит 2 однотипных металлических электродов помещенных в смесь солей этого металла в различных концентрациях.

Кроме Гальвани созданием эффективной батареи занимался Даниэль Якоби. Он немного видоизменил свой источник энергии. В его состав входит пластина, выполненная из меди, помещенная в CuSO4 и пластина из цинка погруженная в ZnSO4. Чтобы не дать им воздействовать прямо друг на друга между ними установлена пористая стенка. Ниже представлена схема гальванического элемента Даниэля Якоби.

Цинк и медь обладают разной активностью и поэтому их заряд по величине будет различным. В итоге уровень электродов также не однозначен. Это позволяет им перемещаться и производить электрический или гальванический ток. Он начинает протекать, когда любой человек или изобретатель тока хранящего аппарата присоединяет нагрузку. В качестве нее может быть лампочка, приемник, компьютерная мышка и другие электрические устройства.

Схема гальванического элемента

Под схемой подразумевают его состав и устройство. Он может быть выполнен из нескольких химических элементов с применением вспомогательных приспособлений. Ниже об строение гальванического элемента будет рассказано кратко. Подробнее о нем читайте в этой статье!

Устройство гальванического элемента

Самый простой энергетический накопитель состоит из:

  1. Стрежня из угля.
  2. Двух разнородных металлов.
  3. Электролита.
  4. Смола или пластик.
  5. Изолятора.

Как видно из этой схемы в составе строения гальванического элемента имеется отрицательный и положительный электрод. Они могут быть выполнены из меди, цинка и других металлов. Имеют название по типу медно цинковые. Иногда их называют сухие батарейки.

Обозначение гальванического элемента на схеме выполнено в виде двух вертикальных прямых приближенных друг к другу на небольшом расстоянии. Одна из которых будет меньше. По краям возле каждой такой линии имеются знаки, обозначающие полярность. У длинной линии ставят плюс, а у короткой минус. Рядом может располагаться вольтаж. Это означает что схема в которой используется батарейка работает только от этого напряжения.

Принцип работы гальванического элемента

Работа гальванического элемента осуществляется за счет движения электронов от одного металлического контакта к другому. Идет некое химическое превращение. Подробнее про термодинамику гальванического элемента и образование гальванического электричества читайте здесь.

Источник:
http://batareykaa.ru/vse-o-galvanicheskom-jelemente/

Какие превращения происходят в гальванических элементах

Ответ оставил Гуру

при работе гальванического элемента в стандартных условиях происходит процессы превращения химической энергии реагентов в электрическую.

Ответ оставил Ger1602

Электрическая энергия превращается в химическую

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Физика.

Предпосылки к появлению гальванических элементов. Немного истории. В 1786 году итальянский профессор медицины, физиолог Луиджи Алоизио Гальвани обнаружил интересное явление: мышцы задних лапок свежевскрытого трупика лягушки, подвешенного на медных крючках, сокращались, когда ученый прикасался к ним стальным скальпелем. Гальвани тут же сделал вывод, что это — проявление «животного электричества».

После смерти Гальвани, его современник Алессандро Вольта, будучи химиком и физиком, опишет и публично продемонстрирует более реальный механизм возникновения электрического тока при контакте разных металлов.

Вольта, после серии экспериментов, придет к однозначному выводу о том, что ток появляется в цепи из-за наличия в ней двух проводников из разных металлов, помещенных в жидкость, и это вовсе не «животное электричество», как думал Гальвани. Подергивание лапок лягушки было следствием действия тока, возникающего при контакте разных металлов (медные крючки и стальной скальпель).

Вольта покажет те же явления, которые демонстрировал Гальвани на мертвой лягушке, но на совершенно неживом самодельном электрометре, и даст в 1800 году точное объяснение возникновению тока: «проводник второго класса (жидкий) находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов… Вследствие этого возникает электрический ток того или иного направления».

В одном из первых экспериментов Вольта опустил в банку с кислотой две пластинки — цинковую и медную — и соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток.

Так был изобретён «элемент Вольта» — первый гальванический элемент. Для удобства Вольта придал ему форму вертикального цилиндра (столба), состоящего из соединённых между собой колец цинка, меди и сукна, пропитанных кислотой. Вольтов столб высотою в полметра создавал напряжение, чувствительное для человека.

Поскольку начало исследованиям положил Луиджи Гальвани, то и название химического источника тока сохранило память о нем в своем названии.

Гальванический элемент — это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Таким образом, в гальванических элементах химическая энергия переходит в электрическую.

Гальванические элементы сегодня

Гальванические элементы сегодня называют батарейками. Широко распространены три типа батареек: солевые (сухие), щелочные (их называют еще алкалиновыми, «alkaline» в переводе с английского — «щелочной») и литиевые. Принцип их работы — все тот же, описанный Вольта в 1800 году: два металла взаимодействуют через электролит, и во внешней замкнутой цепи возникает электрический ток.

Напряжение батарейки зависит как от используемых металлов, так и от количества элементов в «батарейке». Батарейки, в отличие от аккумуляторов, не способны к восстановлению своих свойств, поскольку в них происходит прямое преобразование энергии химической, то есть энергии составляющих батарейку реагентов (восстановителя и окислителя), в энергию электрическую.

Входящие в батарейку реагенты, в процессе ее работы расходуются, ток при этом постепенно уменьшается, поэтому действие источника заканчивается после того как реагенты прореагируют полностью.

Щелочные и солевые элементы (батарейки) широко применяются для питания разнообразных электронных устройств, радиоаппаратуры, игрушек, а литиевые чаще всего можно встретить в портативных медицинских приборах типа глюкометров или в цифровой технике вроде фотоаппаратов.

Солевые батарейки

Марганцево-цинковые элементы, которые называют солевыми батарейками — это «сухие» гальванические элементы, внутри которых нет жидкого раствора электролита.

Цинковый электрод (+) — это катод в форме стакана, а анодом служит порошкообразная смесь из диоксида марганца с графитом. Ток течет через графитовый стержень. В качестве электролита используется паста из раствора хлорида аммония с добавлением крахмала или муки для загущения, чтобы ничего не текло.

Обычно производители батареек не указывают точный состав солевых элементов, тем не менее, солевые батарейки являются самыми дешевыми, их обычно используют в тех устройствах, где энергопотребление крайне низко: в часах, в пультах дистанционного управления, в электронных термометрах и т. п.

Понятие «номинальная емкость» редко употребляется для характеристики марганцево-цинковых батареек, так как их емкость сильно зависит от режимов и условий эксплуатации. Основными недостатками этих элементов являются значительная скорость снижения напряжения на всем протяжении разряда и значительное уменьшение отдаваемой емкости при увеличении тока разряда. Конечное разрядное напряжение устанавливают в зависимости от нагрузки в интервале 0,7-1,0 В.

Важна не только величина тока разряда, но и временной график нагрузки. При прерывистом разряде большими и средними токами работоспособность батареек заметно увеличивается по сравнению с непрерывным режимом работы. Однако при малых разрядных токах и многомесячных перерывах в работе емкость их может снижаться в следствии саморазряда.

Читайте также  Переделка прицепа для легкового автомобиля своими руками

Выше на графике изображены разрядные кривые для средней солевой батарейки за 4, 10, 20 и 40 часов для сравнения с щелочной, о которой речь пойдет далее.

Щелочные (алкалиновые) батарейки

Щелочной элемент питания — марганцево-цинковый гальванический элемент питания, в котором в качестве катода используется диоксид марганца, в качестве анода — порошкообразный цинк, а в качестве электролита — раствор щёлочи, обычно в виде пасты гидроксида калия.

Эти батарейки обладают целым рядом преимуществ (в частности, существенно большей ёмкостью, лучшей работой при низких температурах и при больших токах нагрузки).

Щелочные батарейки, в сравнении с солевыми, могут обеспечивать больший ток в течение длительного времени. Больший ток становится возможным, поскольку цинк здесь используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия в виде пасты.

Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), щелочные батарейки наиболее распространены в настоящее время.

В электрических игрушках, в портативной медицинской технике, в электронных приборах, в фотоаппаратах — всюду применяются щелочные батарейки. Они служат в 1,5 раза дольше солевых, если разряд идет малым током. На графике изображены разрядные кривые при различных токах для сравнения с солевой батарейкой (график был приведен выше) за 4, 10, 20 и 40 часов.

Литиевые батарейки

Еще одним достаточно распространенным видом гальванических элементов являются литиевые батарейки — одиночные неперезаряжаемые гальванические элементы, в которых в качестве анода используется литий или его соединения. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов.

Катод и электролит литиевого элемента могут быть очень разными, поэтому термин «литиевый элемент» объединяет группу элементов с одинаковым материалом анода. В качестве катода могут использоваться например: диоксид марганца, монофторид углерода, пирит, тионилхлорид и др.

Литиевые батарейки отличается от других элементов питания высокой продолжительностью работы и высокой стоимостью. В зависимости от выбранного типоразмера и используемых химических материалов, литиевый элемент питания может производить напряжение от 1,5 В (совместим с щелочными батареями) до 3,7 В.

Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Литиевые элементы широко применяются в современной портативной электронной технике: для питания часов на материнских платах компьютеров, для питания портативных медицинских приборов, наручных часов, калькуляторов, в фототехнике и т. д.

На графике выше приведены разрядные кривые для двух литиевых батареек от двух популярных производителей. Начальный ток составлял 120 мА (на резистор порядка 24 Ома).

Физика А.В. Перышкин

1. Что такое электрический ток?

Электрическим током называется упорядочен¬ное (направленное) движение заряженных частиц.

2. Что нужно создать в проводнике, чтобы в нём возник и существовал ток?

Чтобы в проводнике возник и существовал ток, надо создать в нем электрическое поле с помощью источников электрического тока.

3. Какие превращения энергии происходят внутри источника тока?

В источниках электрического тока происходит превращение механической, внутренней или другой энергии в электрическую в результате работы по разделению заряженных частиц.

4. Как устроен сухой гальванический элемент?

Сухой гальванический элемент содержит цинковый сосуд (Zn), внутри которого есть угольный стержень (С), помещенный в смесь оксида марганца (IV) (МnО2) и углерода, между ними находится желеобразный раствор соли (NH4CI). В ходе химической реакции цинка с хлоридом аммония цинковый сосуд заряжается отрицательно, а стержень — положительно.

5. Что является положительным и отрицательным полюсами батареи?

Корпус батареи является отрицательным полюсом, а стержень — положительным.

6. Как устроен аккумулятор?

Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещенных в раствор серной кислоты. Бывают и щелочные аккумуляторы.

7. Где применяются аккумуляторы?

Аккумуляторы применяются в мобильных телефонах, плеерах, ноутбуках, автомобилях, железнодорожных вагонах, на подводных лодках, на искусственных спутниках Земли и многих других современных устройствах.

Источник:
http://stroi-obzor.ru/strojka/kakie-prevrashhenija-proishodjat-v-galvanicheskih/

Возникновение тока в гальваническом элементе. Электродвижущая сила. Преимущества и недостатки гальванических элементов

Два металла, погруженные в растворы их солей, соединенные между собой электролитическим ключом, образуют гальванический элемент.

Возникновение электрического тока гальваническом элементе обусловлено разностью электродных потенциалов взятых металлов и сопровождается глубокими химическими превращениями, протекающими на электродах. Покажем это на примере работы медно — цинкового элемента.

На цинковом электроде, опущенном в раствор сульфата цинка, происходит окисление атомов цинка в ионы (растворение цинка):

электроны при этом поступают во внешнюю цепь. На медном электроде, погруженном в раствор сульфата меди, происходит восстановление ионов металла в атомы:

Одновременно часть ионов SO4 2- переходит через “электролитический мостик” в сосуд с раствором сульфата цинка,

Суммарное уравнение процесса получим:

Zn — 2e = Zn 2 + анодный процесс

Cu 2+ + 2e = Cu катодный процесс

Zn + Cu 2+ = Zn 2+ + Cu суммарный процесс

Электрод, на котором протекает процесс окисления, называется анодом (в нашем случае цинковый),а электрод, на котором протекает процесс восстановления — катодом (медный). Гальванический элемент можно записать в виде краткой электрохимической схемы:

(-) Zn | Zn 2+ || Cu 2+ | Cu (+) в ионном виде или

(-) Zn / ZnSO4//CuSO4 / Cu (+) в молекулярном

Обычно анод записывается слева, а катод — справа.

Необходимым условием работы гальванического элемента возникновение разности потенциалов на его электродах.

При вычислении напряжения гальванического элемента принято потенциал с меньшей алгебраической величиной вычитать из потенциала с большей алгебраической величиной; другими словами, из потенциала положительного полюса (катода) вычитать потенциал отрицательного (анода)

x = j o катод — j o анод

Напряжение медно — цинкового гальванического элемента определяется

x = j o Cu /Cu2+ — j o Zn/Zn2+ = (+0,34) — ( — 0,76 ) = +1,10 в

Положительный знак напряжения определяет направление самопроизвольного протекания реакции слева направо. Как известно, движущей силой химической реакции является убыль энергии Гиббса. Для реакций, осуществляемых в условиях гальванического элемента, работа, производимая системой, равна работе электрического тока:

где I — ток в цепи;

U — падение напряжения;

Q- количество электричества

В случае, если реакция протекает обратимо в равновесных условиях, U = E (напряжение элемента равно напряжению на электродах при токе равном нулю) и работа будет максимальная:

Для одного моля вещества, вступающего в реакцию, Q = nF, где n — число электронов, принимаемых или отдаваемых веществом; F = 96500 Кл/моль, число Фарадея, это количество электричества, необходимое для выделения 1 моль вещества. С учетом этого можно записать:

В стандартных условиях:

Взаимосвязь между напряжением гальванического элемента и значением DG дает возможность непосредственно определить величину DG.

Для медно — цинкового элемента

Amax = -DG298 o + 2*96500*1,1 = 212300 Дж = 212,3 кДж

Это значение DG совпадает с измеренной стандартной энтальпией для этой реакции, равной -212,3 кДж. Большое влияние на величину электродного потенциала оказывает концентрация катионов, одноименных с металлом электрода. Электродный потенциал с учетом этого влияния вычисляется по формуле Нернста:

j = j o +( RT/nF) ln C

где j 0 — нормальный потенциал металла, В;

n — его валентность (ряд иона металла);

C — концентрация катионов этого же металла в моль /л;

Для газообразных веществ под знаком логарифма вместо Ci входят парциальные давления соответствующих веществ. Учитывая, что обычно гальванические элементы работают при стандартных условиях, уравнение Нернста можно записать:

j = j o + (0,059/n )lg C

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (Eex). В замкнутом контуре (L) тогда ЭДС будет равна:

где dl — элемент длины контура.

ЭДС, так же как и напряжение, измеряется в вольтах.

Гальванические элементы как источники электрической энергии обладают существенными преимуществами: они могут быть различных размеров и форм, не имеют макроскопически подвижных, подверженных износу частей, относительно легки и автономны, мало чувствительны к вибрации и колебаниям температуры, работают бесшумно, хорошо регулируются. Их КПД довольно высок (до 90%), так как превращение химической энергии в электрическую совершается в них без промежуточной тепловой стадии, а электродные процессы в некоторых случаях близки к обратимым.

Существенным недостатком гальванических элементов является саморазряд — расходование ими электрохимически активных веществ при отсутствии внешнего тока. Причиной этого может быть- например, растворение металла электродов вследствие образования tax называемых локальных элементов, или протекание процесса, генерирующего ток, «непосредственным химическим» путем, или же недостаточная изолирующая способность диэлектрических деталей элемента. Саморазряд уменьшает срок службы элемента, последний со временем становится непригодным, даже если он вообще не использовался для получения энергии.

Источник:
http://studbooks.net/2279953/matematika_himiya_fizika/vozniknovenie_toka_galvanicheskom_elemente_elektrodvizhuschaya_sila_preimuschestva_nedostatki_galvanicheskih