Что можно заварить электросваркой

Что можно заварить электросваркой

Практически каждому человеку приходится сталкиваться с использованием сварки. Сварочный аппарат является необходимой вещью для решения бытовых проблем. Правильно варить не получается с первого раза – это факт. Поэтому для того, чтобы можно было сваривать металл у себя дома, нужно знать основные принципы работы с электросваркой и знать, что ею можно сваривать.

Для сваривания в быту можно использовать любой сварочный аппарат с максимальным сварочным током 160 Ампер. Принцип работы электросварки заключается в том, что при его работе возбуждается электрическая дуга между поверхностью свариваемого металла и электродом.

Правильно сваривать электро сваркой у Вас получится только в том случае, если Вы будете соблюдать простейшие правила зажигания сварочной дуги. К свариваемой детали крепится один из проводов, который идет от трансформатора и называется «массой». Другой провод со вставленным электродом в электродный держатель подносится к месту сваривания и с помощью прикосновения возбуждается электрическая дуга.

Для того чтобы правильно производить сваривание электрической сваркой, нужно обеспечить стабильное горение сварочной дуги. Этого можно достичь правильно подобрав оптимальное расстояние между сварочным электродом и свариваемой деталью. Обычно сварочная дуга прекрасно горит на расстоянии 2 – 6 миллиметров. Под влиянием температуры металл сварочного электрода расплавляется и заполняет углубление, которое образовалось в результате воздействия дуги на металл. Передвигая электрод вдоль шва, сварщик заполняет это место раскаленным металлом. Важной составляющей сваривания является выбор присадочного электрода.

При сварке электросваркой нужно ориентироваться на вид и состав свариваемого металла. Для электрической сварки применяются стальные, медные, чугунные, медные и латунные электроды. Для сваривания углеродистых, конструкционных и малоуглеродистых сталей применяются электроды марок : 342, 360, 385, 332, 338, 385, 370 и другие.

В маркировке таких электродов используется индекс, который обозначает вязкость сварочного шва, а цифры, стоящие после него – твердость металла. Основным требованием при подборе сварочных электродов для сварки электрическим сварочным аппаратом является соответствие толщине металла.

Правильно производить сваривание электросваркой поможет поддержание электрода в правильном положении. Угол электрода по отношению к сварочному шву должен составлять приблизительно 75 градусов в направлении электрической дуги. При возникновении дуги нужно использовать метод чирканья и метод подъема. В первом случае нужно кончиком электрода сделать движение похожее по манере зажигания спички, а в случае поджога ведется по шву.

Второй метод заключается в постукивании и подъеме сварочного электрода при возникновении сварочной дуги. Электрической сваркой можно производить сваривание всех металлов, для которых существуют соответствующие сварочные электроды. Исключением являются очень тонкие металлы, например фольга.

Источник:
http://3g-svarka.ru/chto-mozhno-varit-elektrosvarkoy.php

Сварка разнородных металлов и сплавов, показатели свариваемости различных металлов

Свариваемость металлов – это способность металлов разных видов или их сплавов образовывать соединения, соответствующие техническо-эксплуатационным требованиям при установленной технологии сварки.

Возможность сваривать разносоставные стали и другие металлы между собой позволяет объединять лучшие качества различных материалов. Такой подход значительно повышает функциональность изделий, но требует особых условий, в которых возможна сварка разнородных металлов и сплавов.

Соответствующие технологии разработаны, чтобы решать проблемы, связанные с различными свойствами соединяемых металлов (температура плавления, теплоотдача, глубина проплавления, образование оксидной пленки).

  • Варианты свариваемых пар разнородных металлов
  • Сварка разнородных металлов и сплавов, используемые присадочные материалы

Варианты свариваемых пар разнородных металлов

Группы сплавов, наиболее часто применяемые при разнородном сваривании

  • Сплавы на основе железа (Fe), которые, в свою очередь, подразделяются на подгруппы:
    • Углеродистые стали
    • Низкоуглеродистые легированные стали
    • Инструментальные пружинные стали
    • Нержавеющие стали
    • Чугуны
  • Никельные сплавы (Ni)
    • Чистый никель
    • Монель
    • Никонель
    • Нимоник
    • Хастелой
  • Медные сплавы (Cu)
    • Чистая медь
    • Латуни
    • Оловянные бронзы
    • Алюминиевые бронзы
    • Кремниевые бронзы
    • Никельно-медные
  • Алюминиевые сплавы (Al)
  • Магниевые сплавы (Mg)
  • Титановые сплавы (Ti)
  • Кобальтовые сплавы (Co)

Наиболее распространенные пары соединяемых материалов, которые встречаются в промышленности

  • Сплавы на основе Fe + Al, алюминиевые сплавы
  • Сплавы на основе Fe + Cu, медные сплавы
  • Сплавы на основе Fe + Ti
  • Сплавы на основе Fe + Mb
  • Сплавы на основе Fe + Nb
  • Cu + Al
  • Ti + Al
  • Ti + тантал
  • Ti + Cu
  • Mb + Cu

Для большинства представленных вариантов сварки разнородных металлов и сплавов характерны большие отличия в температуре плавки, физико-тепловых свойствах, показателях расширения материалов.

Сварка разнородных металлов и сплавов, используемые присадочные материалы

Множество факторов определяют качественное состояние сварного шва, когда необходимо соединить материалы с отличающимися характеристиками. Образования оксидной пленки, разная температура плавки, взаимодействие при нагревании с газом и другие трудности, которые возникают при сваривании. Особенно капризный в отношении посторонних примесей алюминий и походные от него сплавы.

Сваривание алюминия и его сплавов со сталями

Процесс сваривания затрудняется активным возникновением оксидной пленки, которая мгновенно покрывает поверхность этого металла.

Разделка сварочных фасок производится под углом 70˚. Шов с таким углом обладает наибольшей надежностью. Перед свариванием кромки тщательно зачищают при помощи пескоструя или другим механическим путем для покрытия активирующим слоем. Самым распространенным и экономичным покрытием является оцинкование.

  • При гальваническом оцинковании оптимальная толщина слоя 30-40 мкм
  • При термическом оцинковании – 60-90 мкм

Тип сварки – аргонно-дуговая, неплавящимся вольфрамовым электродом

Присадочный материал – алюминиевый пруток АД1 с включениями кремния.

Технология процесса сваривания

Зажигание дуги производится с присадочного прутка для начала образования валика, благодаря стекающему алюминию. Необходимо свариваемые заготовки расположить в пространстве так, чтобы алюминий при расплавлении натекал на черный металл. При необходимости сварочные валики накладываются в несколько слоев. Главное не допустить перегрев стальной детали, что приведет к выгоранию активирующего слоя раньше времени. Сваривание производится по очередности с обеих сторон.

Режим скорости сварки алюминия должен повышаться к концу процесса. Такой метод вырабатывается сварщиком для сохранения активирующего покрытия.

Сваривание меди и ее сплавов со сталями

В этом типе соединений примечательно влияние количества углерода на качество сварного шва. Чем его меньше, тем прочней и качественней выходит взаимопроникновение в области смешивания. Благотворно на свариваемость влияют марганец (Mg) и кремний (Si).

Тип сварки – аргонно-дуговая, неплавящимся вольфрамовым электродом, ручная дуговая – плавящимся электродом, плазменное наплавление с использованием в качестве присадки токоподводящей проволоки.

Материалы для присадки – при сваривании чистой меди и бронзы БрАМц, БрКМц; для латуни Л90, 09Г2; при флюсовой сварке проволока марки М и БрКМц; для сваривания в атмосфере защитных газов МНЖ, БрКМц, БрАМц.

Флюсы — АН-26; ОСЦ-45

Технология сварочного процесса – быстрое динамическое расширение меди вследствие нагрева образовывает множество мелких микротрещин в стали в области (и около) сплавления. Для получения швов с оптимальными свойствами рекомендуется присадочный материал с вместительностью железа не более 10%.

При сварке нужно следить, чтобы было минимальное проплавление стали. При сваривании дуга должна быть смещена в сторону цветной заготовки.

Сваривание титана со сталью

Образование ломких интерметаллических областей не позволяет добиться качественных сварочных швов при прямом сваривании. Для получения качественных соединений применяются промежуточные вставки.

Тип сварки – аргонно-дуговая, неплавящимся вольфрамовым электродом

Технология сварочного процесса – наилучшие прочностно-пластичные показатели соединений дало применение БрБ2 (промежуточных вставок) из обработанной температурой бронзы и технического тантала. Для достижения особого качества швов сварка производится в специальных боксах с контролируемым микроклиматом.

Сваривание меди с алюминием

Образование ломких областей и другие различающиеся свойства этих цветных металлов значительно затрудняют процесс сваривания.

Тип сварки – аргонно-дуговая, неплавящимся электродом по флюсу

Технология сварочного процесса – после очищения медь проходит оцинковку для формирования активирующего слоя не более 60 мкм. В целом процесс схож со свариванием алюминия и стали, при котором смещение сварочной дуги происходит в сторону металла с большей температурой плавления. Для повышения свойств шва применяется 5 % легирование кремнием.

Сваривание алюминия с титаном

В этом случае появляются затруднения с возникновением интерметаллической зоны, приводящей к хрупкости стыка.

Тип сварки – аргонно-дуговая, неплавящимся электродом

Материал для присадки – алюминиевая проволока AB00

Технология процесса сварки – тщательно зачищенные кромки с разделанными фасками алитируют (аллюминизируют при нагреве 800 – 830˚С). Сваривание производят обычным методом для алюминиевых сплавов, смещая дугу в сторону более тугоплавкого материала.

Сваривание меди и ее сплавов с титаном

Образование хрупких зон предотвращается использованием промежуточных вставок из сплавов титана.

Тип сварки – аргонно-дуговая, неплавящимся вольфрамовым электродом

Технология процесса сварки – для вставок используются сплавы титана с включением легирующих добавок молибдена или ниобия типа ВТ15. Структуры кристаллических решеток таких вставок схожи с кристаллической структурой меди. Методы сваривания те же самые, что применяются при сварке меди и ее сплавов.

Сваривание ниобия, тантала и молибдена со сплавами цветных металлов и сталями

Поскольку эти элементы используются в качестве вставок для соединения – они имеют высокие показатели свариваемости.

Тип сварки – аргонно-дуговая, неплавящимся вольфрамовым электродом

Технология процесса сварки – возможность типов сварных соединений этих элементов указана выше на примере вставок для соединения. При соединении тантала и меди в качестве присадки используется БрБ2 (бериллиевая бронза). Для сварки зачастую применяются боксы с регулируемым микроклиматом.

Естественно, что перечислены далеко не все способы. Указаны наиболее широко используемые технологии сварки разнородных материалов. Например, существует высокотехнологическая электронно-лучевая сварка, производящаяся в специальных вакуумных камерах направленным потоком электронов. Но такой способ возможен исключительно в рамках профильных предприятий.

Источник:
http://solidiron.ru/obrabotka-metalla/svarka-raznorodnykh-stalejj-metallov-i-splavov-pokazateli-svarivaemosti-razlichnykh-metallov.html

Сварка разнородных металлов

Сварка разнородных металлов

Получение высококачественной сварной конструкции — это сварка идентичных, или же хотя бы похожих по строению металлов. Однако, существует множество случаев, когда сварные конструкции производятся из металлов различных составов и свойств. Причина для того — износ, высокие температуры или другие условия, где от разных частей сварной конструкции требуются разные свойства.

Это создаёт необходимость производства сварных конструкций из разнородных металлов. Такая необходимость возникает в самых разных сферах производства всё чаще. Данная статья написана, чтобы предоставить информацию по успешному составлению комбинаций между некоторыми из более доступных видов металлов.

В случае качественной сварки металлов разнородных видов прочность полученной конструкции примерно совпадает с показателем прочности одного из двух соединяемых металлов, а именно того, чей показатель более низкий. Таким образом, эта система обладает таким пределом прочности и ковкостью, при которых сварочный шов, соединяющий конструкцию, не сможет разойтись. Соединения могут быть произведены между многими видами металлов с помощью разных способов сварки.
Проблема сварки подобных металлов связана с тем, что для таких процессов вначале нужно изучить фазовую диаграмму интерметаллического соединения. Если между выбранными металлами возможна свариваемость, то это объединение будет успешно произведено. В противном случае этого сделать не удастся.

Читайте также  Как узнать характеристики телефона Андроид (какой у него процессор, сколько ядер, какая память, ОЗУ, камера, батарея и прочее)

Соединения между металлами необходимо изучить на предмет подверженности коррозии и деформируемости. Микроструктура такого соединения очень важна. Иногда приходится использовать третий металл, чтобы успешно произвести сварку.
Ещё один фактор, который определяет время службы любого соединения двух металлов – коэффициент теплового расширения. Если коэффициенты двух металлов сильно различаются, то оно может вскоре разрушиться.

Помимо прочего, стоит обратить внимание на различие температур плавления металлов. Она также крайне важна, поскольку из-за этой разницы один из металлов будет расплавлен задолго до другого при едином для обоих элементов температурном воздействии. Когда металлы с разными температурами плавления и коэффициентами теплового расширения нужно объединить, то сварочный процесс с высокой тепловой мощностью поможет произвести соединение быстрее, что, несомненно, является преимуществом.

Расстояние на электрохимической шкале показывает устойчивость металлов к коррозии в интерметаллической зоне. Если они расположены далеко, то коррозия станет серьёзной проблемой.

Использование промежуточного металла

В некоторых случаях, как и упоминалось прежде, можно создать сварочную конструкцию из двух металлов, только использовав нечто в качестве переходного материала. Например, при сварке меди со сталью. Такие элементы невозможно сварить напрямую, но, например, никель можно сварить с каждым из них. Таким образом, с помощью промежуточного металла данное объединение будет произведено.

Ещё объединить разнородные металлы можно использовав композитную вставку между ними. Эта вставка состоит из другого промежуточного объединения между разнородными металлами, совершенного с помощью сварочного процесса, который не требует нагревания.

Процессы сварки для композитных вставок

Далее следует краткое описание сварочных процессов, которые могут использоваться для создания композитных вставок:

• Cварка взрывом
• Холодная сварка
• Ультразвуковая сварка
• Сварка трением
• Сварка сопротивлением высокочастотным током
• Диффузионная сварка
• Перкуссионная сварка
• Лазерная сварка
• Дуговая сварка

Сваривание алюминия с различными металлами

Металлы обладают широким диапазоном температур плавления. У алюминия она составляет примерно 650 градусов Цельсия, у железа — примерно 1538 градусов. Поэтому при плавке алюминий расплавится задолго до стали.
Фазовая диаграмма сварки алюминия с железом показывает, что сплавы железа с алюминием с долей железа более чем 12 % почти не имеют ковкости. Также, у алюминия и железа большая разница между коэффициентом теплового расширения, теплопроводимостью и теплоёмкостью. Это может стать причиной термических напряжений.
Самый действенный способ – использовать алюминиево-стальные (биметаллические) переходные вставки для сваривания сплавов алюминия со сталью при помощи электродуговой сварки.

Еще один способ — покрыть железо металлом, совместимым с алюминием. Успех в этом случае зависит от того, чем покрывается железо, а также толщины слоя и прочности соединения железа и этого металла. Покрыв цинком железо, можно сварить его с алюминием при помощи дуговой сварки. Для сварки алюминия с нержавеющей сталью можно использовать переходные вставки. Также можно использовать вышеупомянутый метод покрытия.
Сваривание алюминия с медью может быть осуществлено с помощью переходной вставки.

Сваривание меди с различными металлами

Медь и её сплавы можно сварить со сплавами железа и с нержавеющей сталью. Для более тонких частей сварочной конструкции можно использовать аргонодуговую сварку с содержащим сплав меди присадочным прутком. Импульсный режим позволяет сделать получение качественного сплава более простой задачей. Дуга должна быть направлена на медную часть конструкции. Для более широких частей конструкции стоит сперва покрыть сталь вышеупомянутым присадочным материалом. Медь следует предварительно нагреть.
Ещё один метод – наплавить медь никельсодержащим электродом. Рекомендуется сделать два слоя. В этом случае её вначале нужно разогреть примерно до 540 градусов Цельсия.
Медь также можно сварить с нержавейкой, а латунь – со сплавами железа.

Сваривание никелевых сплавов с железом.

Никелевые сплавы, такие как монель и инконель могут быть сварены с низколегированной сталью с помощью любого из процессов дуговой сварки с использованием материалов-наполнителей. Таким же образом их можно сварить с нержавейкой, если использовать подходящий электрод.

В случае, если вам понадобится любое сварочное оборудование, материалы, а также квалифицированная консультация — специалисты компании Земля Сварщиков помогут найти ответ и/или наиболее эффектиное решение поставленной задачи.

Источник:
http://svarkaland.ru/ctati/svarka-raznorodnyx-metallov

Как варить металл и современные методы сваривания

Как варить металл и что же такое сварка? Это неразъемное соединение металлических деталей, которое образуется в результате их нагрева в месте стыковки до расплавленного состояния.
Расплавленный, а затем застывший материал называется сварным швом. Не все металлы поддаются свариванию. Отлично свариваются однородные материалы. Например, чугун с чугуном или медь с медью (причем, ручная дуговая сварка меди выполняется в защитном газе) . Хорошо варятся железо и хром, никель и медь. Это происходит потому, что эти металлы в жидком состоянии образуют хорошо смешивающиеся слои.

Но если вы попытаетесь сварить медь со свинцом, то из этой затеи ничего не выйдет – эти металлы не смешиваются между собой. То же самое можно сказать о железе и магнии или алюминии и висмуте. При необходимости сварки таких пар в смесь добавляют металлы, которые способны раствориться с каждым компонентом пары. Иными словами, в наше время нет секретов, как сварить металлы.

Виды сваривания металла

  • Сварка плавлением (электрическая дуговая сварка, электрошлаковая, электроконтактная, электронно-лучевая). При таком виде сварки расплавленные кромки деталей образуют общую сварочную ванну или, другими словами, общий объем расплава, из которого и образуется сварной шов. Источником нагрева места сварки металлов может быть электрическая дуга, плазма, горелка и т.д.
  • Сварка давлением (сваривание взрывом, ультразвуком, холодная сварка). Соединение металлов в этом случае происходит за счет уменьшения расстояния между атомами металлов до такой величины, когда между ними начинают работать силы взаимного притяжения.

Наиболее распространена электро дуговая сварка металлов. На ее долю приходится 65% всех сварочных работ. Расплавление материалов при этом способе происходит под воздействием сварочной дуги. Она образуется между основным металлом, предназначенным для сваривания, и присадочным материалом – проволокой.

Способы дуговой сварки:

  • полуавтоматическая. При полуавтоматической дуговой сварке механизирована подача сварочной проволоки в зону сваривания. Остальные операции (поддержание нужного размера дуги, придание шву требуемой формы, перемещение электрода по линии сварного шва и прекращение работ) выполняются человеком;
  • автоматическая. Это слово говорит само за себя. Задача человека – тщательно подготовить детали к сварке, включить и выключить оборудование;
  • ручная. Сущность ручной дуговой сварки заключается в выполнении всех операций вручную без применения каких-либо механизмов.

Виды дуговой сварки:

  • сварка плавящимся электродом. Этот метод изобретен Славяновым: кромки изделия и присадка одновременно расплавляются под действием сварочной дуги. Образующийся при этом расплав (сварочная ванна) заполняет зазор между деталями, а после кристаллизации образует сварной шов. Для защиты расплава от окисления на присадку наносится покрытие, которое под действием высокой температуры превращается в шлак. Этот слой покрывает жидкий металл. Кроме защиты от кислорода, шлак выполняет еще одну функцию: в него переходят вредные примеси, содержащиеся в сварочной ванне;
  • сварка неплавящимся электродом. Автор этого изобретения – Бернадос Н. Н. Чаще всего такой метод применяется при сварке меди, алюминия, наплавке твердых сплавов и сварке тонколистовой стали. Схема сварки неплавящемся электродом

Сварочная дуга

Сварочная дуга образуется следующим образом:

  1. К электроду и основному металлу подводится электрический ток.
  2. Сварщик прикасается присадкой к основному металлу, в результате чего возникает короткое замыкание в сварочной цепи. Поскольку электрод имеет неровную поверхность, контакт происходит в нескольких точках одновременно.
  3. В зонах контакта металла и электрода возникает ток высокой плотности. Он расплавляет присадочный материал, появляется тонкая пленка жидкого металла.
  4. При отведении присадки из жидкого расплава вытягивается шейка. В ней плотность тока, а, следовательно, и температура металла еще больше возрастают
  5. Металл испаряется, шейка рвется, в ионизированном облаке паров и газов загорается сварочная дуга.

Напряжение сварочной дуги зависит от ее длины: чем короче дуга, тем ниже напряжение. Если используется металлический электрод, то для устойчивого горения дуги требуется напряжение 18-28 В. Для угольного электрода напряжение должно быть от 30 до 35 В.

Сварочная дуга, которая горит равномерно, без обрывов и не требует повторного зажигания, называется устойчивой.

Устойчивость дуги зависит от:

  1. рода электрического тока (постоянный или переменный);
  2. состава покрытия присадочного материала;
  3. полярности. При постоянном токе полярность может быть прямой и обратной.
  • прямая полярность – минус источника тока подается на электрод;
  • обратная полярность – минус подсоединяется к изделию.

Влияние полярности тока на температуру

4. длины дуги. Это величина, равная расстоянию от торца электрода до поверхности ванны сварочной. Для стального электрода эта величина не превышает 2-4 мм (короткая дуга). Это оптимальная величина, которая обеспечивает устойчивость горения и хорошее качество сварного соединения.

Длина, равная 4-6 мм считается нормальной, а более 6 мм – длинной. Длинная дуга – плохой вариант: она неустойчива, плавление металла проходит неравномерно, капли расплава, стекающие с электрода, окисляются и насыщаются азотом. Шов получается пористым, неровным. Появляются непроваренные участки.

Как правильно варить дуговой сваркой

1. Подготовительные работы

  • правка деталей, предназначенных для сварки. Править металл можно как вручную, на правильных плитах, так и на различных листоправильных вальцах. Сильно деформированный металл иногда требует правки в горячем состоянии.
  • разметка. Лист размечают согласно чертежу (или эскизу) с помощью измерительных инструментов и шаблонов. Размечая деталь, следует иметь в виду, что в процессе сваривния детали укорачиваются. Поэтому надо на каждый поперечный стык оставлять припуск в 1 мм, а на каждый погонный метр продольного шва – 0,1-0,2 мм;
  • резка;

Этой операции подвергаются основной материал и присадочный. На них не должно быть окалины, ржавчины, масел и других загрязнений: даже незначительное количество загрязнений приведет к дефектам сварного шва, снижению его прочности, а следовательно и надежности готового изделия. Особенно тщательно следует очистить кромки и прилегающих к ним зон шириной 25-30 мм;

3. Подготовка кромок

Форма кромок зависит от толщины листа. Они должны быть притуплены одинаковым радиусом, а зазор между ними должен быть одинаковым по всей длине будущего сварного шва;

На эту операцию приходится до 30% общей трудоемкости. Для удобства используются различные шаблоны и инструменты, и сварочные приспособления. Сборку надо производить в той последовательности, чтобы предыдущая операция не мешала выполнению последующей.

Уроки дуговой сварки.

  • Возбуждение сварочной дуги. Зажечь дугу можно двумя способами:
  1. чиркнув электродом по основному металлу, как спичкой;
  2. прикоснувшись к изделию концом электрода.
Читайте также  Не регулируется яркость экрана на ноутбуке, что делать? Как настроить яркость

В обоих случаях электрод надо быстро отвести в сторону на расстояние 2-4 мм.

Дуга загорелась. Чтобы постоянно поддерживать ее постоянную длину, надо по мере расплавления электрода постепенно опускать его. Длину дуги надо держать как можно короче, иначе она потеряет устойчивость со всеми вытекающими последствиями.

  • Если в процессе сварки дуга все-таки оборвалась, то ее зажигают, продвинув электрод вперед от точки обрыва, а затем возвращаются, заваривают кратер и продолжают шов.
  • Как правильно держать электрод для того чтобы качественно варить металл? Обычно электрод должен быть расположен вертикально или наклонно по отношению ко шву, углом вперед или назад. При расположении электрода углом назад получается глубоко проваренный неширокий, аккуратный шов. Такое положение предпочтительно при сварном соединении в тавр, угол или внахлест. Опытные сварщики так же выполняют и стыковые соединения.

Планируете варить алюминиевую конструкцию аргонодуговой сваркой? Как это делается, подробно описано в нашей статье.

Выбор режима ручной дуговой сварки

От правильно выбранных режимов зависит стабильность сварочного процесса и качество сварки. Различают основные и дополнительные параметры.

Основные параметры:

  • Свойства сварочного тока (величина, полярность и род);
  • Диаметр электрода;
  • Напряжение дуги;
  • Скорость сварочного процесса;
  • Величина поперечных колебаний торца электрода.

Дополнительные параметры:

  • величина вылета электрода;
  • состав и толщина покрытия электрода;
  • положение электрода в пространстве;
  • начальная температура основного материала;
  • положение изделия в процессе сварки.

Рассмотрим подробнее основные параметры

1. Выбор сварочного тока

Параметр зависит от диаметра электрода, его покрытия, пространственного положения шва. От величины тока зависит глубина провара и производительность сварки. Если сила тока будет недостаточной, то количество тепла, поступающего в ванну, будет маленьким, в результате чего появятся непровары, ухудшающие качество соединения деталей.

Дуговая электросварка слишком большим током тоже может приводить к непровару, так как быстро плавящийся электрод может попадать на еще нерасплавленный основной металл. Рекомендуемый ток указывается на электродных упаковках.
Кроме того, следует учитывать следующее:

  • при использовании тока обратной полярности глубина провара больше почти на 50%, чем при прямой полярности. Поэтому при сварке тонколистовых и легированных материалов следует применять ток обратной полярности во избежание пережогов и перегревов;
  • при сварке переменным током глубина провара будет меньше на 15-20%, чем при сварке постоянным током обратной полярности.

Выбор сварочного тока и диаметра электрода

2. Выбор диаметра электрода

Диаметр электрода зависит от толщины кромок свариваемого материала и разделки кромок. Если кромки не разделаны, то диаметр электрода выбирают в зависимости от толщины свариваемого металла. Так, например, при толщине металла 20 мм испльзуют электроды диаметром 12 мм.

Если же кромка разделана, то независимо от марки металла корневой шов выполняется электродом в 2- 3 мм. Последующие слои накладываются диаметром 4 мм. Правда, если толщина основного металла превышает 12 мм, допускается последующие слои выполнять пятимиллиметровым электродом.

Выбор корневого электрода зависит от типа соединения. Но главный принцип выбора – чем ответственнее шов, тем меньший диаметр электрода применяется.

3.Скорость сварки должна быть оптимальной

Чем выше скорость, тем уже шов. Но при слишком высокой скорости могут быть несплавления основного металла с металлом шва.

4.Величина колебаний

Величина поперечных колебаний электрода должна находиться в пределах 2,5-3 диаметра электрода – это оптимальный вариант для получения качественного сварного шва.

Источник:
http://elsvarkin.ru/texnologiya/kak-varit-metall-vidy-svarki/

Сварка различных металлов: типы и особенности

Важно! Не допускается сваривать высокоуглеродистую сталь, если внешняя температура воздуха опустилась ниже 5 °C или на месте сварочных работ «гуляют» сквозняки.

Если все условия соблюдены, высокоуглеродистую сталь сваривают теми же способами, что и среднеуглеродистую. Для сварки можно применять и ацетиленовую горелку с расходом газа от 75 до 90 дм³/ч на 1 миллиметр толщины сварного шва.

Особенности сваривания легированных сталей

В легированной стали содержится хром, марганец, молибден, вольфрам, никель и другие элементы, которые повышают устойчивость к коррозиям, износам и твердость деталей.

По содержанию элементов легированные стали делят на 3 типа:

  • Низколегированные, содержащие не более 2,5 % легирующих элементов.
  • Среднелегированные, содержащие 2,5 %–10 %.
  • Высоколегированные – более 10 % элементов.

Сталь называется по тому элементу, который входит в ее состав, например молибденовая, хромистая или ванадиевая. В зависимости от объема содержания легирующих элементов для каждого типа стали используют определенные особенности сварки.

Сварка низколегированных сталей

Главный показатель свариваемости таких сталей – это сопротивляемость к появлению трещин после остывания металла. Низколегированные стали содержат небольшое количество углерода, никеля, кремния, серы и фосфора, что исключает появление разрывов в процессе сварки.

Для них используют следующие методы:

  1. Дуговую сварку с электродами типа Э-70 с фтористо-кальциевым покрытием с низким содержанием водорода. Величину сварочного тока выбирают в зависимости от диаметра электрода, его марки, толщины сварных деталей и типа соединения. Сваривают в один проход без разрывов с постоянным подогревом более 200 °С.
  2. Сварку под флюсом при постоянном токе обратной полярности с силой не более 800 А и напряжением дуги не более 40 В. Детали толщиной до 8 мм сваривают в один проход, для деталей с толщиной до 20 мм используют двухстороннюю сварку. Чаще всего для соединений без обработки кромок используют проволоку Св-08ХН2М.
  3. Газовую сварку в углекислом газе – характеризуется повышенным выгоранием легирующих элементов. Если для сварки используют углекислый газ, сварщик должен брать проволоку Св-08Г2С, Св-10ХГ2СМА, Св-08ХН2Г2СМЮ или порошковую проволоку. Если используют аргоновую смесь, оптимальным вариантом будет проволока Св-08ХН2ГМЮ.

Сварка среднелегированных сталей

Среднелегированные стали содержат никель, молибден, хром, ванадий и вольфрам и отличаются хорошим сочетанием прочности и пластичности за счет очистки от неметаллических элементов.

Прочность соединения сварных частей зависит от химического состава сварного шва. Баланс достигается за счет уменьшения доли легирующих элементов в сварном материале по сравнению с основным металлом. Крепкий на разрыв шов образуется, когда в него переходят легирующие элементы основного металла.

Для сварки используют низколегированные электроды, не содержащие органических элементов. Во время сварки важно не допустить воздействия на металл влаги или ржавчины, так как содержащийся в них водород снижает прочность сварного шва.

Для сварки среднелегированных сталей чаще всего применяют проволоки:

Основными методами сварки являются:

  1. Аргонодуговая сварка. Эффективна для соединения деталей толщиной 3–5 мм с применением неплавящегося электрода для достижения равномерной глубины проплавки.
  2. Газовая сварка ацетиленокислородом, которая позволяет добиться качественного и ровного шва.

Сварка высоколегированных сталей

При нагревании выше 500 °С в высоколегированной стали происходит выпадение карбидов хрома, из-за чего теряются антикоррозийные свойства. Чтобы восстановить их, деталь нагревают до 1000–1150 °С и быстро охлаждают

Ключевые характеристики таких сталей, которые влияют на качество сварки, – низкая степень теплопроводности и высокий коэффициент линейного расширения. Первая характеристика влияет на увеличение тепловой концентрации в месте соединения и проплавления металла. Высокое линейное расширение приводит к деформациям деталей и появлению трещин.

При этом высоколегированные стали считаются жаропрочными, хладостойкими и устойчивыми к коррозиям. Одну и ту же марку стали не используют для различных изделий, а значит и подход к сварке будет индивидуальным.

Надежнее всего для сварки использовать электроды с покрытием из молибдена, марганца или вольфрама, это повысит пластические свойства металла и снизит вероятность появления трещин. Перед сваркой металл необходимо подогреть до 200–300 °С и выше для сбалансированного распределения температур. После сварки металл также нужно термически обработать.

Для сварки высоколегированных сталей применяют:

  1. Газовую сварку с пламенем мощностью 70–75 дм 3 ацетилена/ч на 1 мм толщины металла. Ее используют для тонких деталей в пределах 1–2 мм. Здесь применяют низкоуглеродистую сварочную проволоку Св-02Х19Н9Т или Св-08Х19Н10Б с диаметром близким к толщине сварной детали.
  2. Ручную дуговую сварку – больше вариантов в выборе электродов. Чаще всего используют проволоку с фтористокальциевой обмазкой для получения шва нужного химического состава.
  3. Сварку под флюсом – для деталей толщиной 3–50 мм. Флюс замешивают на жидком стекле и наносят на кромки деталей. Сваривают после того, как флюс засохнет.

Особенности сваривания меди и медных сплавов

Медь и ее сплавы отличаются высокой теплопроводностью, что затрудняет получение прочного сварного шва. Поэтому такие металлы сваривают с помощью методик высокотемпературного плавления. Чаще всего применяют:

  • дуговую сварку в защитных газах;
  • ручную дуговую сварку покрытыми электродами;
  • механизированную дуговую сварку под флюсом;
  • газовую сварку;
  • электронно-лучевую сварку.

Сварка в защитных газах

При таком типе сварки с минимальным содержанием примесей получается прочный сварной шов. Чаще всего применяют азот, аргон, гелий и их смеси. В качестве электрода используют неплавящийся вольфрамовый стержень, а для присадки – медную проволоку. Для азотной сварки на присадочную проволоку наносят борный флюс.

Ручная дуговая сварка

Выполняют на постоянном токе обратной полярности. Для медных листов толщиной до 4 мм не требуется разделка кромок, для листов до 10 мм применяют одностороннюю разделку с углом скоса 60–70° и притуплением 1,5–3 мм, для листов более 10 мм – Х-образная разделка.

При дуговой сварке используют электроды «Комсомолец-100», АНЦ/ОЗМ-2, АНЦ/ОЗМ-3, ЗТ и АНЦ-3. Сварку ведут по короткой дуге. Для металла толщиной в 5–8 мм требуется прогрев до 300 °С, при толщине 24 мм – до 800 °С. Для сплавов меди с никелем, бронзой и латунью применяют электроды ММЗ-2, Бр1/ЛИВТ, ЦБ-1 и МН-4.

Механизированная дуговая сварка под флюсом

Машина равномерно подает флюс, так что по окончании сварки получается идеально ровный сварной шов

Металл сваривают с помощью угольного или плавящегося электрода. Для угольного электрода применяют постоянный ток прямой полярности и флюсы АН-348А, ОСЦ-45, АН-20. Кромки металла собирают на графитовой подкладке, а поверх стыка кладут присадочный материал, как правило латунь. Таким способом удобно сваривать детали толщиной до 10 мм.

Для сварки с плавящимся электродом используют постоянный ток обратной полярности и флюсы АН-200, АН-348А, ОСЦ-45 и АН-M1. Если при сварке применяют неплавящийся керамический флюс ЖМ-1, дугу нужно запускать при переменном токе.

Этот способ удобен, потому что не требует предварительного прогрева металла. Для сварки чистой меди используют проволоку диаметром 1,4–5 мм из меди МБ, M1 или бронзы БрКМц 3-1, БрОЦ 4-3.

Для сварки латуни используют флюсы АН-20, ФЦ-10, МАТИ-53, бронзовые БрКМцЗ-1, БрОЦ4-3 и латунные ЛК80-3 проволоки.

Газовая сварка

Чаще всего применяют ацетиленокислородную сварку, с помощью которой достигается сверхвысокая температура пламени. Для газовой сварки используют флюсы с содержанием бора. Флюс наносят слоем в 10–12 мм на кромки и присадочную медную проволоку М1 или М2. Для сварки латуни рекомендуется брать проволоку ЛК80-3 из кремнистой латуни.

Читайте также  Как остановить электросчетчик ТОП-5 способов

Электронно-лучевая сварка

Такой тип сварки эффективен в производстве медных изделий высокой чистоты, так как не допускается выпадение и осадок примесей. Альтернативным типом соединения деталей является плазменная сварка, которой «сшивают» металл толщиной до 60 мм. При сварке используют слой флюса или порошковую проволоку.

Особенности сваривания алюминия и алюминиевых сплавов

Главная особенность сварки алюминия и его сплавов – активная реакция металла с кислородом, при которой образуется оксид алюминия Al2O3 с повышенной температурой плавления в 2050 °С. При этом температура плавления чистого алюминия – всего 658 °С. Оксид остается в сварном шве и разрушает его структуру.

Второй ключевой момент – разрушаемость алюминия при температуре в пределах 600 °С. Важно учесть, что у алюминия нет переходного состояния и при сильном нагреве он становится жидким.

Эти проблемы решаются следующими путями:

  1. При сварке применяют флюсы и электроды со специальными покрытиями, которые растворяют Al2O3. После сварки остатки электродов и флюсов необходимо тщательно удалить с деталей.
  2. Для присадки используют проволоку из алюминия с 5-процентным содержанием кремния.
  3. Детали толщиной в 6–7 мм сваривают одним проходом без обработки кромок. Для сварки деталей толщиной более 7 мм на кромках делают скос до 60 градусов.
  4. Для сварки используют стальные подкладки, которые удерживают тепло в нужных точках.
  5. Алюминиевые детали толщиной более 20 мм предварительно прогревают до 400 °С.
  6. Начинают сварку при сильном постоянном токе обратной полярности, постепенно снижая его на 15 %.

Как правило, алюминий и его сплавы соединяют аргонно-дуговой сваркой. Для деталей толщиной до 10 мм используют неплавящиеся вольфрамовые или углеродные электроды, а для более толстых – плавящиеся стержни.

Алюминиевые сплавы представлены в 4 категориях:

  • алюминиево-марганцевые;
  • алюминиево-магниевые;
  • алюминиево-медные;
  • алюминиево-кремниевые.

Первый тип отличается повышенной прочностью и устойчивостью к коррозиям. Эти характеристики улучшаются, если использовать сплав алюминия и 5–6 % магния. Прочность дюралюминиевых сплавов повышается при закалке.

Алюминиевые детали толщиной до 4 мм сваривают через прямой стык без скоса кромок. При соединении необходимо оставить зазор не более 0,5 мм. Для более толстых деталей на кромках делают V-образный скос под 35 градусов.

Внахлест детали лучше не сваривать, так как между кромками будет затекать флюс, который вызовет коррозию металла. Перед сваркой кромки нужно обезжирить и очистить от оксида алюминия металлической щеткой или ортофосфорной кислотой.

Можно ли сваривать алюминий со сталью при изготовлении металлических изделий? Да, но нужно учитывать, что при сварке образуются хрупкие соединения, которые разрушают структуру стального шва. Проблему решают двумя путями:

  1. Используют биметаллические переходные вставки из алюминия и других металлов. При этом применяют сварку взрывом, прокатку, давление подогревом. Таким образом каждый тип металла приваривается к себе подобному.
  2. Используют алюминиевое покрытие стали с помощью погружения в расплавленный металл или припайку алюминия на стальную деталь. Кроме того, сталь можно покрыть припоем из серебра, а при сваривании использовать присадки из алюминиевых сплавов.

Особенности сваривания титана и титановых сплавов

Титан и его сплавы сваривают по специальным технологиям, так как данный металл ведет себя весьма специфично при различных температурах

Титан – металл с высокой температурой плавления – около 1600 °С. Считается одним из самых сложных металлов для сварки, так как в чистом виде активно реагирует с кислородом и азотом при нагревании до 400 °С. Поэтому зону сварки необходимо изолировать от воздействия атмосферного воздуха.

Для соединения титановых деталей нужна очень быстрая сварка без постепенного повышения температуры. Поэтому самым распространенным способом соединения титана и его сплавов является аргонная сварка на постоянном токе малой величины. Для нее не нужны электроды и флюсы, что исключает попадание в сварной шов посторонних соединений.

Титан и титановые сплавы сваривают в 2 этапа:

  1. Подготовка. Сварщик зачищает поверхность титановых деталей, удаляет различные оксиды. Детали обрабатывает соляной кислотой или фтором при температуре 60 °С. От попадания воздуха детали защищают медными или стальными прокладками.
  2. Сварка. В аргонную горелку вставляют вольфрамовый электрод. При появлении дуги образуется сварочная ванна с температурой до 6000 °С. Аргон обеспечивает дополнительную защиту от кислорода и азота.

При соблюдении всех требований у сварщика получается ровный и аккуратный сварной шов, который не требует дополнительной обработки.

В заключение стоит отметить, что для сваривания различных типов сталей требуется соответствующая квалификация сварщика. Например, начинающий сварщик легко справится со сваркой алюминия или низкоуглеродистых сталей. А вот сварить титан и его сплавы под силу опытному мастеру, который досконально знает все особенности процесса.

Источник:
http://zmkmsk.ru/blog/cvarka-razlichnyh-metallov-tipy-i-osobennosti/

Все особенности аргоновой сварки: принцип и техника работы

Принцип работы аргоновой сварки сочетает особенности соединения металлов при помощи электро- и газосварочного оборудования. В процессе задействован инертный газ, представленный аргоном. Технология позволяет работать с алюминием, медью, чугуном, другими металлами, а также с нержавейкой.

Принцип работы

Метод подразумевает создание высокой температуры с помощью электрической дуги. Одновременно, сварочная область принудительно заполняется аргоном, который вытесняет кислород, изолирует ее от внешней среды, служит защитой от коррозии.

При использовании неплавящегося электрода поджиг дуги производится без его контакта с изделием. Высокий потенциал ионизации инертного газа препятствует ионизации дугового промежутка за счет искры в промежутке электрод – изделие. В случае с плавящимся электродом, дуга зажигается искрой благодаря низкому, по сравнению с инертным газом, ионному потенциалу, паров железа.

Прикасаясь к свариваемому металлу, вольфрамовый электрод загрязняется и оплавляется. Проблема поджига решается введением в схему питания осциллятора. Возбуждение дугового промежутка обеспечивается импульсами с большим напряжением. При работе с переменным током, ионизировав дугу, осциллятор преобразуется в стабилизатор. Его кратковременные импульсы препятствуют деионизации дугового промежутка, когда меняется полярность.

При аргонодуговой сварке объектов толщиной свыше 3 мм, а также для усиления шва используются присадочные прутки (проволока), которые по материалу соответствую изделию.

Преимущества и недостатки

По отношению к другим методам сварки, аргонная выделяется рядом преимуществ. Благодаря ей можно:

  • получить качественные соединения, швы которых лишены пор и примесей;
  • уменьшить нагрев свариваемых деталей, свести к минимуму их деформацию;
  • обеспечить высокую скорость за счет высокой температуры дуги;
  • сваривать металлы, неподдающиеся другим методам;
  • работать с тонкостенными металлическими деталями.

В результате использования принципа работы аргонно дуговой сварки получается аккуратный, равномерно проплавленный шов.

Но метод не лишен некоторых недостатков, выраженных в:

  • наличие сложного оборудования, которое нуждается в точных настройках;
  • необходимости специальных знаний.

Автоматический режим не всегда применим для работы с короткими швами.

Классификация видов

Технологически аргонодуговая сварка разнится типами электродов, по питанию – постоянным или переменным напряжением. По уровню механизации она подразделяется на:

  • ручную. Сварщик направляет горелку и подает проволоку вручную;
  • механизированную. Горелка перемещается сварщиком, а сварочная проволока подается специальным механизмом;
  • автоматизированную. За перемещение горелки и подачу проволоки отвечает механическое устройство, контролируемое оператором;
  • роботизированную. Оборудование, работающее согласно заложенной программе, не нуждается в присутствии человека.

Первые два вида, помимо промышленности, применяются в быту. Автоматизированные системы используются на крупных предприятиях.

Что можно варить

Аргоновая сварка применяется при работах с цветными металлами, сплавами, легированной сталью. Контроль глубины плавления делает ее эффективной для тонкостенных изделий, когда к поверхности объекта возможен только односторонний доступ. Метод широко распространим в автомобильной, авиационной отраслях. Он востребован областями, где необходимы качественные сварочные швы.

Оборудование и оснащение

Сварочные работы с использованием аргона производится с помощью универсального, специального оборудования. Промышленностью налажен серийный выпуск универсальных аппаратов различной мощности и назначения. Производственный вариант аргонно-дуговой сварки подразумевает организацию «сварочного поста», в комплектацию которого входят:

  • источник постоянного/переменного тока;
  • горелки для работы с разными электродами;
  • устройство запуска, которое поджигает дугу при постоянном токе или стабилизирует при переменном (осциллятор);
  • аппаратура контроля сварочного цикла;
  • устройство, позволяющее компенсировать и регулировать постоянную токовую составляющую;
  • газовая станция (баллон с аргоном, оснащенный датчиком давления);
  • вентиляция.

В современном варианте большинство из этих устройств (кроме горелок) объединены в одном аппарате, называемом инвертором. Благодаря доступности, приспособление популярно в быту.

Техника сварки

Перед тем, как варить аргоновой сваркой, необходимо обзавестись инвертором или специальным сварочным трансформатором, баллоном с аргоном, горелкой, присадочными материалами. Процесс подчиняется следующим правилам:

  1. Область тщательно очищается от загрязнений и обезжиривается.
  2. Газ подается за 20 секунд до начала сварочных работ, а перекрывается спустя 10 секунд после завершения процесса.
  3. Минимальная дуга – залог качественной сварки и аккуратного шва. Чем дальше горелка находится от свариваемой поверхности, тем шире область нагрева и глубже проплав поверхности свариваемого изделия.
  4. Для получения эстетичности шва, движения производятся вдоль его оси без отступлений.
  5. Присадочный пруток (проволока) подается перед горелкой с исключением поперечных движений. Благодаря этому достигается узкость шва.
  6. Электрод и присадка не должны покидать защитную газовую зону.
  7. Плавные движения исключают искры и разбрызгивание металла.
  8. Процесс завершается заливкой кратера, что производится при пониженном токе. Резкий отвод горелки и обрыв дуги отрицательно влияют на защиту шва.

Научиться пользоваться аргоновой сваркой несложно. Однако, чтобы получить идеальные соединения и швы нужно запастись терпением.

Для выбора оптимального режима аргонно-дуговой сварки аргонщику приходится оперировать множеством параметров. При настройке сварочного оборудования учитываются:

  1. Род тока – постоянный (переменный используется при сварочных работах с алюминием, бериллием, магнием, их сплавами).
  2. Полярность тока – прямая.
  3. Сила тока – выбирается с учетом свариваемого материала и диаметра электрода.
  4. Напряжение дуги – влияет на длину дуги, ширину шва, глубину проплавления.
  5. Скорость процесса – подбирается индивидуально.
  6. Расход аргона – зависит от объема и длительности работ.
  7. Расстояние между кончиком электрода и присадкой – сварка встык: 3–5 мм, угловые, тавровые соединения: 5–8 мм.

При сварочных работах аргонно-дуговым методам не стоит забывать о средствах защиты, представленных маской и перчатками. Хотя метод не сопровождается чрезмерным выделением дыма, его лучше проводить в хорошо проветриваемом помещении.

Источник:
http://tehnopanorama.ru/instrumenty/argonovaya-svarka.html